Loading…

Data-driven decision-making for wastewater treatment process

Membrane fouling has become a serious issue for the safe operation of wastewater treatment process (WWTP). To deal with this problem, this paper proposes a data-driven decision-making method to reduce the incidence of membrane fouling in WWTP. The main novelties of this proposed data-driven decision...

Full description

Saved in:
Bibliographic Details
Published in:Control engineering practice 2020-03, Vol.96, p.104305, Article 104305
Main Authors: Han, Hong-Gui, Zhang, Hui-Juan, Liu, Zheng, Qiao, Jun-Fei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c318t-eb9706049d0dc7ce214b5492a15362fea6f323f295a55a3dfe1939ae803d7be73
cites cdi_FETCH-LOGICAL-c318t-eb9706049d0dc7ce214b5492a15362fea6f323f295a55a3dfe1939ae803d7be73
container_end_page
container_issue
container_start_page 104305
container_title Control engineering practice
container_volume 96
creator Han, Hong-Gui
Zhang, Hui-Juan
Liu, Zheng
Qiao, Jun-Fei
description Membrane fouling has become a serious issue for the safe operation of wastewater treatment process (WWTP). To deal with this problem, this paper proposes a data-driven decision-making method to reduce the incidence of membrane fouling in WWTP. The main novelties of this proposed data-driven decision-making method are threefold. First, a long-term prediction method, based on a self-organizing deep belief network (SDBN) and the multi-step prediction strategy, is developed to predict the membrane permeability. Second, a multi-warning method, based on an independent component analysis-principal component analysis (ICA-PCA) algorithm, is proposed to detect and warn membrane fouling with multiple indicators. Third, a multi-category diagnosis method, based on the kernel function, is designed to diagnose membrane fouling for providing the decision support. Finally, an intelligent decision-making system, consisting the above methods and required sensors, is developed for some real wastewater treatment plants. The experimental results demonstrated the efficiency and effectiveness of the proposed data-driven decision-making method.
doi_str_mv 10.1016/j.conengprac.2020.104305
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_conengprac_2020_104305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0967066120300058</els_id><sourcerecordid>S0967066120300058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-eb9706049d0dc7ce214b5492a15362fea6f323f295a55a3dfe1939ae803d7be73</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKvvMC-Qmp-ZzATcaNUqFNzoOtwmNyWjkylJaPHtnVLBpasDB77D4SOk4mzBGVe3_cKOEeN2l8AuBBPHupasOSMz3rWSKi31OZkxrVrKlOKX5Crnnk2o1nxG7h6hAHUp7DFWDm3IYYx0gM8Qt5UfU3WAXPAABVNVEkIZMJZql0aLOV-TCw9fGW9-c04-np_ely90_bZ6Xd6vqZW8KxQ3umWK1doxZ1uLgtebptYCeCOV8AjKSyG90A00DUjnkU-nATsmXbvBVs5Jd9q1acw5oTe7FAZI34Yzc7RgevNnwRwtmJOFCX04oTj92wdMJtuA0aILCW0xbgz_j_wAqg5rrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data-driven decision-making for wastewater treatment process</title><source>ScienceDirect Journals</source><creator>Han, Hong-Gui ; Zhang, Hui-Juan ; Liu, Zheng ; Qiao, Jun-Fei</creator><creatorcontrib>Han, Hong-Gui ; Zhang, Hui-Juan ; Liu, Zheng ; Qiao, Jun-Fei</creatorcontrib><description>Membrane fouling has become a serious issue for the safe operation of wastewater treatment process (WWTP). To deal with this problem, this paper proposes a data-driven decision-making method to reduce the incidence of membrane fouling in WWTP. The main novelties of this proposed data-driven decision-making method are threefold. First, a long-term prediction method, based on a self-organizing deep belief network (SDBN) and the multi-step prediction strategy, is developed to predict the membrane permeability. Second, a multi-warning method, based on an independent component analysis-principal component analysis (ICA-PCA) algorithm, is proposed to detect and warn membrane fouling with multiple indicators. Third, a multi-category diagnosis method, based on the kernel function, is designed to diagnose membrane fouling for providing the decision support. Finally, an intelligent decision-making system, consisting the above methods and required sensors, is developed for some real wastewater treatment plants. The experimental results demonstrated the efficiency and effectiveness of the proposed data-driven decision-making method.</description><identifier>ISSN: 0967-0661</identifier><identifier>EISSN: 1873-6939</identifier><identifier>DOI: 10.1016/j.conengprac.2020.104305</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Data-driven decision-making method ; Intelligent decision-making system ; Long-term prediction method ; Membrane fouling ; Multi-category diagnosis method ; Multi-warning method</subject><ispartof>Control engineering practice, 2020-03, Vol.96, p.104305, Article 104305</ispartof><rights>2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-eb9706049d0dc7ce214b5492a15362fea6f323f295a55a3dfe1939ae803d7be73</citedby><cites>FETCH-LOGICAL-c318t-eb9706049d0dc7ce214b5492a15362fea6f323f295a55a3dfe1939ae803d7be73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Han, Hong-Gui</creatorcontrib><creatorcontrib>Zhang, Hui-Juan</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Qiao, Jun-Fei</creatorcontrib><title>Data-driven decision-making for wastewater treatment process</title><title>Control engineering practice</title><description>Membrane fouling has become a serious issue for the safe operation of wastewater treatment process (WWTP). To deal with this problem, this paper proposes a data-driven decision-making method to reduce the incidence of membrane fouling in WWTP. The main novelties of this proposed data-driven decision-making method are threefold. First, a long-term prediction method, based on a self-organizing deep belief network (SDBN) and the multi-step prediction strategy, is developed to predict the membrane permeability. Second, a multi-warning method, based on an independent component analysis-principal component analysis (ICA-PCA) algorithm, is proposed to detect and warn membrane fouling with multiple indicators. Third, a multi-category diagnosis method, based on the kernel function, is designed to diagnose membrane fouling for providing the decision support. Finally, an intelligent decision-making system, consisting the above methods and required sensors, is developed for some real wastewater treatment plants. The experimental results demonstrated the efficiency and effectiveness of the proposed data-driven decision-making method.</description><subject>Data-driven decision-making method</subject><subject>Intelligent decision-making system</subject><subject>Long-term prediction method</subject><subject>Membrane fouling</subject><subject>Multi-category diagnosis method</subject><subject>Multi-warning method</subject><issn>0967-0661</issn><issn>1873-6939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKvvMC-Qmp-ZzATcaNUqFNzoOtwmNyWjkylJaPHtnVLBpasDB77D4SOk4mzBGVe3_cKOEeN2l8AuBBPHupasOSMz3rWSKi31OZkxrVrKlOKX5Crnnk2o1nxG7h6hAHUp7DFWDm3IYYx0gM8Qt5UfU3WAXPAABVNVEkIZMJZql0aLOV-TCw9fGW9-c04-np_ely90_bZ6Xd6vqZW8KxQ3umWK1doxZ1uLgtebptYCeCOV8AjKSyG90A00DUjnkU-nATsmXbvBVs5Jd9q1acw5oTe7FAZI34Yzc7RgevNnwRwtmJOFCX04oTj92wdMJtuA0aILCW0xbgz_j_wAqg5rrA</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Han, Hong-Gui</creator><creator>Zhang, Hui-Juan</creator><creator>Liu, Zheng</creator><creator>Qiao, Jun-Fei</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202003</creationdate><title>Data-driven decision-making for wastewater treatment process</title><author>Han, Hong-Gui ; Zhang, Hui-Juan ; Liu, Zheng ; Qiao, Jun-Fei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-eb9706049d0dc7ce214b5492a15362fea6f323f295a55a3dfe1939ae803d7be73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data-driven decision-making method</topic><topic>Intelligent decision-making system</topic><topic>Long-term prediction method</topic><topic>Membrane fouling</topic><topic>Multi-category diagnosis method</topic><topic>Multi-warning method</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Hong-Gui</creatorcontrib><creatorcontrib>Zhang, Hui-Juan</creatorcontrib><creatorcontrib>Liu, Zheng</creatorcontrib><creatorcontrib>Qiao, Jun-Fei</creatorcontrib><collection>CrossRef</collection><jtitle>Control engineering practice</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Hong-Gui</au><au>Zhang, Hui-Juan</au><au>Liu, Zheng</au><au>Qiao, Jun-Fei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-driven decision-making for wastewater treatment process</atitle><jtitle>Control engineering practice</jtitle><date>2020-03</date><risdate>2020</risdate><volume>96</volume><spage>104305</spage><pages>104305-</pages><artnum>104305</artnum><issn>0967-0661</issn><eissn>1873-6939</eissn><abstract>Membrane fouling has become a serious issue for the safe operation of wastewater treatment process (WWTP). To deal with this problem, this paper proposes a data-driven decision-making method to reduce the incidence of membrane fouling in WWTP. The main novelties of this proposed data-driven decision-making method are threefold. First, a long-term prediction method, based on a self-organizing deep belief network (SDBN) and the multi-step prediction strategy, is developed to predict the membrane permeability. Second, a multi-warning method, based on an independent component analysis-principal component analysis (ICA-PCA) algorithm, is proposed to detect and warn membrane fouling with multiple indicators. Third, a multi-category diagnosis method, based on the kernel function, is designed to diagnose membrane fouling for providing the decision support. Finally, an intelligent decision-making system, consisting the above methods and required sensors, is developed for some real wastewater treatment plants. The experimental results demonstrated the efficiency and effectiveness of the proposed data-driven decision-making method.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.conengprac.2020.104305</doi></addata></record>
fulltext fulltext
identifier ISSN: 0967-0661
ispartof Control engineering practice, 2020-03, Vol.96, p.104305, Article 104305
issn 0967-0661
1873-6939
language eng
recordid cdi_crossref_primary_10_1016_j_conengprac_2020_104305
source ScienceDirect Journals
subjects Data-driven decision-making method
Intelligent decision-making system
Long-term prediction method
Membrane fouling
Multi-category diagnosis method
Multi-warning method
title Data-driven decision-making for wastewater treatment process
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-driven%20decision-making%20for%20wastewater%20treatment%20process&rft.jtitle=Control%20engineering%20practice&rft.au=Han,%20Hong-Gui&rft.date=2020-03&rft.volume=96&rft.spage=104305&rft.pages=104305-&rft.artnum=104305&rft.issn=0967-0661&rft.eissn=1873-6939&rft_id=info:doi/10.1016/j.conengprac.2020.104305&rft_dat=%3Celsevier_cross%3ES0967066120300058%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-eb9706049d0dc7ce214b5492a15362fea6f323f295a55a3dfe1939ae803d7be73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true