Loading…

PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems

In recent years, advanced persistent threats (APTs) have frequently occurred with increasing severity on a global scale. Provenance graph-based APT detection systems have demonstrated significant effectiveness. However, current data compression methods face challenges in processing massive data volu...

Full description

Saved in:
Bibliographic Details
Published in:Computers & security 2025-05, Vol.152, p.104359, Article 104359
Main Authors: Jin, Jiaobo, Zhu, Tiantian, Yuan, Qixuan, Chen, Tieming, Lv, Mingqi, Zheng, Chenbin, Mei, Jian-Ping, Pan, Xiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c969-87caf7c0066181ad76543371519160ebb6cbd85b89278ba471585e79f1011eb33
container_end_page
container_issue
container_start_page 104359
container_title Computers & security
container_volume 152
creator Jin, Jiaobo
Zhu, Tiantian
Yuan, Qixuan
Chen, Tieming
Lv, Mingqi
Zheng, Chenbin
Mei, Jian-Ping
Pan, Xiang
description In recent years, advanced persistent threats (APTs) have frequently occurred with increasing severity on a global scale. Provenance graph-based APT detection systems have demonstrated significant effectiveness. However, current data compression methods face challenges in processing massive data volumes, including compression imbalance, limited generality, and semantic loss. To address these challenges, we propose PDCleaner, a multi-perspective collaborative data compression method designed to preserve the semantics of provenance graphs. This method comprises three core strategies: a global semantics-driven event deletion strategy, a behavior-preserving entity aggregation strategy, and a similarity-based event chain merging strategy. These strategies collaboratively compress data across three perspectives: events, entities, and event chains, resulting in concise and generalizable datasets suitable for model training and prediction. Experimental results indicate that the multi-perspective collaborative compression method achieves a compression rate of 14.43X while maintaining an average semantic loss of only 4.98%, significantly reducing data size and preserving provenance graph semantics. Furthermore, in a deep learning-based threat detection model, this method reduces training time by up to 20.22% and improves the F1 score by 0.051, offering an optimal data foundation for efficient and accurate threat detection.
doi_str_mv 10.1016/j.cose.2025.104359
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cose_2025_104359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167404825000483</els_id><sourcerecordid>S0167404825000483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c969-87caf7c0066181ad76543371519160ebb6cbd85b89278ba471585e79f1011eb33</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRbVooenjB7rSDziV_JDk0k1InxBoFtkLPcaNgm0ZSU3J31cmXXc1cO_cYe5B6J6SJSWUPRyWxkdYlqRsslBXTXuBFtngRU1qcYWuYzwQQjkTYoHG7fO6BzVCeMQrPHz3yRVHBz_Y-L5X2geV3BGwVUllaZgCxOj8iAdIe29x5wOegj_CqEYD-CuoaV9oFcHi1XaHLSQwad6Pp5hgiLfoslN9hLu_eYN2ry-79Xux-Xz7WK82hWlZWwhuVMcNIYxRQZXlrKmritOGtpQR0JoZbUWjRVtyoVWdHdEAb7vcn4KuqhtUns-a4GMM0MkpuEGFk6REzpDkQc6Q5AxJniHl0NM5BPmxzCDIaBzkWtaF3EJa7_6L_wJmoHM3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems</title><source>ScienceDirect Freedom Collection</source><creator>Jin, Jiaobo ; Zhu, Tiantian ; Yuan, Qixuan ; Chen, Tieming ; Lv, Mingqi ; Zheng, Chenbin ; Mei, Jian-Ping ; Pan, Xiang</creator><creatorcontrib>Jin, Jiaobo ; Zhu, Tiantian ; Yuan, Qixuan ; Chen, Tieming ; Lv, Mingqi ; Zheng, Chenbin ; Mei, Jian-Ping ; Pan, Xiang</creatorcontrib><description>In recent years, advanced persistent threats (APTs) have frequently occurred with increasing severity on a global scale. Provenance graph-based APT detection systems have demonstrated significant effectiveness. However, current data compression methods face challenges in processing massive data volumes, including compression imbalance, limited generality, and semantic loss. To address these challenges, we propose PDCleaner, a multi-perspective collaborative data compression method designed to preserve the semantics of provenance graphs. This method comprises three core strategies: a global semantics-driven event deletion strategy, a behavior-preserving entity aggregation strategy, and a similarity-based event chain merging strategy. These strategies collaboratively compress data across three perspectives: events, entities, and event chains, resulting in concise and generalizable datasets suitable for model training and prediction. Experimental results indicate that the multi-perspective collaborative compression method achieves a compression rate of 14.43X while maintaining an average semantic loss of only 4.98%, significantly reducing data size and preserving provenance graph semantics. Furthermore, in a deep learning-based threat detection model, this method reduces training time by up to 20.22% and improves the F1 score by 0.051, offering an optimal data foundation for efficient and accurate threat detection.</description><identifier>ISSN: 0167-4048</identifier><identifier>DOI: 10.1016/j.cose.2025.104359</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Advanced persistent threats ; Data compression ; Data explosion problem ; Multi-perspective collaboration ; Provenance graph</subject><ispartof>Computers &amp; security, 2025-05, Vol.152, p.104359, Article 104359</ispartof><rights>2025 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c969-87caf7c0066181ad76543371519160ebb6cbd85b89278ba471585e79f1011eb33</cites><orcidid>0000-0002-3360-4025 ; 0000-0002-8657-662X ; 0000-0003-1678-6215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Jin, Jiaobo</creatorcontrib><creatorcontrib>Zhu, Tiantian</creatorcontrib><creatorcontrib>Yuan, Qixuan</creatorcontrib><creatorcontrib>Chen, Tieming</creatorcontrib><creatorcontrib>Lv, Mingqi</creatorcontrib><creatorcontrib>Zheng, Chenbin</creatorcontrib><creatorcontrib>Mei, Jian-Ping</creatorcontrib><creatorcontrib>Pan, Xiang</creatorcontrib><title>PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems</title><title>Computers &amp; security</title><description>In recent years, advanced persistent threats (APTs) have frequently occurred with increasing severity on a global scale. Provenance graph-based APT detection systems have demonstrated significant effectiveness. However, current data compression methods face challenges in processing massive data volumes, including compression imbalance, limited generality, and semantic loss. To address these challenges, we propose PDCleaner, a multi-perspective collaborative data compression method designed to preserve the semantics of provenance graphs. This method comprises three core strategies: a global semantics-driven event deletion strategy, a behavior-preserving entity aggregation strategy, and a similarity-based event chain merging strategy. These strategies collaboratively compress data across three perspectives: events, entities, and event chains, resulting in concise and generalizable datasets suitable for model training and prediction. Experimental results indicate that the multi-perspective collaborative compression method achieves a compression rate of 14.43X while maintaining an average semantic loss of only 4.98%, significantly reducing data size and preserving provenance graph semantics. Furthermore, in a deep learning-based threat detection model, this method reduces training time by up to 20.22% and improves the F1 score by 0.051, offering an optimal data foundation for efficient and accurate threat detection.</description><subject>Advanced persistent threats</subject><subject>Data compression</subject><subject>Data explosion problem</subject><subject>Multi-perspective collaboration</subject><subject>Provenance graph</subject><issn>0167-4048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRbVooenjB7rSDziV_JDk0k1InxBoFtkLPcaNgm0ZSU3J31cmXXc1cO_cYe5B6J6SJSWUPRyWxkdYlqRsslBXTXuBFtngRU1qcYWuYzwQQjkTYoHG7fO6BzVCeMQrPHz3yRVHBz_Y-L5X2geV3BGwVUllaZgCxOj8iAdIe29x5wOegj_CqEYD-CuoaV9oFcHi1XaHLSQwad6Pp5hgiLfoslN9hLu_eYN2ry-79Xux-Xz7WK82hWlZWwhuVMcNIYxRQZXlrKmritOGtpQR0JoZbUWjRVtyoVWdHdEAb7vcn4KuqhtUns-a4GMM0MkpuEGFk6REzpDkQc6Q5AxJniHl0NM5BPmxzCDIaBzkWtaF3EJa7_6L_wJmoHM3</recordid><startdate>202505</startdate><enddate>202505</enddate><creator>Jin, Jiaobo</creator><creator>Zhu, Tiantian</creator><creator>Yuan, Qixuan</creator><creator>Chen, Tieming</creator><creator>Lv, Mingqi</creator><creator>Zheng, Chenbin</creator><creator>Mei, Jian-Ping</creator><creator>Pan, Xiang</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3360-4025</orcidid><orcidid>https://orcid.org/0000-0002-8657-662X</orcidid><orcidid>https://orcid.org/0000-0003-1678-6215</orcidid></search><sort><creationdate>202505</creationdate><title>PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems</title><author>Jin, Jiaobo ; Zhu, Tiantian ; Yuan, Qixuan ; Chen, Tieming ; Lv, Mingqi ; Zheng, Chenbin ; Mei, Jian-Ping ; Pan, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c969-87caf7c0066181ad76543371519160ebb6cbd85b89278ba471585e79f1011eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Advanced persistent threats</topic><topic>Data compression</topic><topic>Data explosion problem</topic><topic>Multi-perspective collaboration</topic><topic>Provenance graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Jiaobo</creatorcontrib><creatorcontrib>Zhu, Tiantian</creatorcontrib><creatorcontrib>Yuan, Qixuan</creatorcontrib><creatorcontrib>Chen, Tieming</creatorcontrib><creatorcontrib>Lv, Mingqi</creatorcontrib><creatorcontrib>Zheng, Chenbin</creatorcontrib><creatorcontrib>Mei, Jian-Ping</creatorcontrib><creatorcontrib>Pan, Xiang</creatorcontrib><collection>CrossRef</collection><jtitle>Computers &amp; security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Jiaobo</au><au>Zhu, Tiantian</au><au>Yuan, Qixuan</au><au>Chen, Tieming</au><au>Lv, Mingqi</au><au>Zheng, Chenbin</au><au>Mei, Jian-Ping</au><au>Pan, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems</atitle><jtitle>Computers &amp; security</jtitle><date>2025-05</date><risdate>2025</risdate><volume>152</volume><spage>104359</spage><pages>104359-</pages><artnum>104359</artnum><issn>0167-4048</issn><abstract>In recent years, advanced persistent threats (APTs) have frequently occurred with increasing severity on a global scale. Provenance graph-based APT detection systems have demonstrated significant effectiveness. However, current data compression methods face challenges in processing massive data volumes, including compression imbalance, limited generality, and semantic loss. To address these challenges, we propose PDCleaner, a multi-perspective collaborative data compression method designed to preserve the semantics of provenance graphs. This method comprises three core strategies: a global semantics-driven event deletion strategy, a behavior-preserving entity aggregation strategy, and a similarity-based event chain merging strategy. These strategies collaboratively compress data across three perspectives: events, entities, and event chains, resulting in concise and generalizable datasets suitable for model training and prediction. Experimental results indicate that the multi-perspective collaborative compression method achieves a compression rate of 14.43X while maintaining an average semantic loss of only 4.98%, significantly reducing data size and preserving provenance graph semantics. Furthermore, in a deep learning-based threat detection model, this method reduces training time by up to 20.22% and improves the F1 score by 0.051, offering an optimal data foundation for efficient and accurate threat detection.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cose.2025.104359</doi><orcidid>https://orcid.org/0000-0002-3360-4025</orcidid><orcidid>https://orcid.org/0000-0002-8657-662X</orcidid><orcidid>https://orcid.org/0000-0003-1678-6215</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0167-4048
ispartof Computers & security, 2025-05, Vol.152, p.104359, Article 104359
issn 0167-4048
language eng
recordid cdi_crossref_primary_10_1016_j_cose_2025_104359
source ScienceDirect Freedom Collection
subjects Advanced persistent threats
Data compression
Data explosion problem
Multi-perspective collaboration
Provenance graph
title PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-26T01%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PDCleaner:%20A%20multi-view%20collaborative%20data%20compression%20method%20for%20provenance%20graph-based%20APT%20detection%20systems&rft.jtitle=Computers%20&%20security&rft.au=Jin,%20Jiaobo&rft.date=2025-05&rft.volume=152&rft.spage=104359&rft.pages=104359-&rft.artnum=104359&rft.issn=0167-4048&rft_id=info:doi/10.1016/j.cose.2025.104359&rft_dat=%3Celsevier_cross%3ES0167404825000483%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c969-87caf7c0066181ad76543371519160ebb6cbd85b89278ba471585e79f1011eb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true