Loading…
PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems
In recent years, advanced persistent threats (APTs) have frequently occurred with increasing severity on a global scale. Provenance graph-based APT detection systems have demonstrated significant effectiveness. However, current data compression methods face challenges in processing massive data volu...
Saved in:
Published in: | Computers & security 2025-05, Vol.152, p.104359, Article 104359 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c969-87caf7c0066181ad76543371519160ebb6cbd85b89278ba471585e79f1011eb33 |
container_end_page | |
container_issue | |
container_start_page | 104359 |
container_title | Computers & security |
container_volume | 152 |
creator | Jin, Jiaobo Zhu, Tiantian Yuan, Qixuan Chen, Tieming Lv, Mingqi Zheng, Chenbin Mei, Jian-Ping Pan, Xiang |
description | In recent years, advanced persistent threats (APTs) have frequently occurred with increasing severity on a global scale. Provenance graph-based APT detection systems have demonstrated significant effectiveness. However, current data compression methods face challenges in processing massive data volumes, including compression imbalance, limited generality, and semantic loss. To address these challenges, we propose PDCleaner, a multi-perspective collaborative data compression method designed to preserve the semantics of provenance graphs. This method comprises three core strategies: a global semantics-driven event deletion strategy, a behavior-preserving entity aggregation strategy, and a similarity-based event chain merging strategy. These strategies collaboratively compress data across three perspectives: events, entities, and event chains, resulting in concise and generalizable datasets suitable for model training and prediction. Experimental results indicate that the multi-perspective collaborative compression method achieves a compression rate of 14.43X while maintaining an average semantic loss of only 4.98%, significantly reducing data size and preserving provenance graph semantics. Furthermore, in a deep learning-based threat detection model, this method reduces training time by up to 20.22% and improves the F1 score by 0.051, offering an optimal data foundation for efficient and accurate threat detection. |
doi_str_mv | 10.1016/j.cose.2025.104359 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cose_2025_104359</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167404825000483</els_id><sourcerecordid>S0167404825000483</sourcerecordid><originalsourceid>FETCH-LOGICAL-c969-87caf7c0066181ad76543371519160ebb6cbd85b89278ba471585e79f1011eb33</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRbVooenjB7rSDziV_JDk0k1InxBoFtkLPcaNgm0ZSU3J31cmXXc1cO_cYe5B6J6SJSWUPRyWxkdYlqRsslBXTXuBFtngRU1qcYWuYzwQQjkTYoHG7fO6BzVCeMQrPHz3yRVHBz_Y-L5X2geV3BGwVUllaZgCxOj8iAdIe29x5wOegj_CqEYD-CuoaV9oFcHi1XaHLSQwad6Pp5hgiLfoslN9hLu_eYN2ry-79Xux-Xz7WK82hWlZWwhuVMcNIYxRQZXlrKmritOGtpQR0JoZbUWjRVtyoVWdHdEAb7vcn4KuqhtUns-a4GMM0MkpuEGFk6REzpDkQc6Q5AxJniHl0NM5BPmxzCDIaBzkWtaF3EJa7_6L_wJmoHM3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems</title><source>ScienceDirect Freedom Collection</source><creator>Jin, Jiaobo ; Zhu, Tiantian ; Yuan, Qixuan ; Chen, Tieming ; Lv, Mingqi ; Zheng, Chenbin ; Mei, Jian-Ping ; Pan, Xiang</creator><creatorcontrib>Jin, Jiaobo ; Zhu, Tiantian ; Yuan, Qixuan ; Chen, Tieming ; Lv, Mingqi ; Zheng, Chenbin ; Mei, Jian-Ping ; Pan, Xiang</creatorcontrib><description>In recent years, advanced persistent threats (APTs) have frequently occurred with increasing severity on a global scale. Provenance graph-based APT detection systems have demonstrated significant effectiveness. However, current data compression methods face challenges in processing massive data volumes, including compression imbalance, limited generality, and semantic loss. To address these challenges, we propose PDCleaner, a multi-perspective collaborative data compression method designed to preserve the semantics of provenance graphs. This method comprises three core strategies: a global semantics-driven event deletion strategy, a behavior-preserving entity aggregation strategy, and a similarity-based event chain merging strategy. These strategies collaboratively compress data across three perspectives: events, entities, and event chains, resulting in concise and generalizable datasets suitable for model training and prediction. Experimental results indicate that the multi-perspective collaborative compression method achieves a compression rate of 14.43X while maintaining an average semantic loss of only 4.98%, significantly reducing data size and preserving provenance graph semantics. Furthermore, in a deep learning-based threat detection model, this method reduces training time by up to 20.22% and improves the F1 score by 0.051, offering an optimal data foundation for efficient and accurate threat detection.</description><identifier>ISSN: 0167-4048</identifier><identifier>DOI: 10.1016/j.cose.2025.104359</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Advanced persistent threats ; Data compression ; Data explosion problem ; Multi-perspective collaboration ; Provenance graph</subject><ispartof>Computers & security, 2025-05, Vol.152, p.104359, Article 104359</ispartof><rights>2025 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c969-87caf7c0066181ad76543371519160ebb6cbd85b89278ba471585e79f1011eb33</cites><orcidid>0000-0002-3360-4025 ; 0000-0002-8657-662X ; 0000-0003-1678-6215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Jin, Jiaobo</creatorcontrib><creatorcontrib>Zhu, Tiantian</creatorcontrib><creatorcontrib>Yuan, Qixuan</creatorcontrib><creatorcontrib>Chen, Tieming</creatorcontrib><creatorcontrib>Lv, Mingqi</creatorcontrib><creatorcontrib>Zheng, Chenbin</creatorcontrib><creatorcontrib>Mei, Jian-Ping</creatorcontrib><creatorcontrib>Pan, Xiang</creatorcontrib><title>PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems</title><title>Computers & security</title><description>In recent years, advanced persistent threats (APTs) have frequently occurred with increasing severity on a global scale. Provenance graph-based APT detection systems have demonstrated significant effectiveness. However, current data compression methods face challenges in processing massive data volumes, including compression imbalance, limited generality, and semantic loss. To address these challenges, we propose PDCleaner, a multi-perspective collaborative data compression method designed to preserve the semantics of provenance graphs. This method comprises three core strategies: a global semantics-driven event deletion strategy, a behavior-preserving entity aggregation strategy, and a similarity-based event chain merging strategy. These strategies collaboratively compress data across three perspectives: events, entities, and event chains, resulting in concise and generalizable datasets suitable for model training and prediction. Experimental results indicate that the multi-perspective collaborative compression method achieves a compression rate of 14.43X while maintaining an average semantic loss of only 4.98%, significantly reducing data size and preserving provenance graph semantics. Furthermore, in a deep learning-based threat detection model, this method reduces training time by up to 20.22% and improves the F1 score by 0.051, offering an optimal data foundation for efficient and accurate threat detection.</description><subject>Advanced persistent threats</subject><subject>Data compression</subject><subject>Data explosion problem</subject><subject>Multi-perspective collaboration</subject><subject>Provenance graph</subject><issn>0167-4048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRbVooenjB7rSDziV_JDk0k1InxBoFtkLPcaNgm0ZSU3J31cmXXc1cO_cYe5B6J6SJSWUPRyWxkdYlqRsslBXTXuBFtngRU1qcYWuYzwQQjkTYoHG7fO6BzVCeMQrPHz3yRVHBz_Y-L5X2geV3BGwVUllaZgCxOj8iAdIe29x5wOegj_CqEYD-CuoaV9oFcHi1XaHLSQwad6Pp5hgiLfoslN9hLu_eYN2ry-79Xux-Xz7WK82hWlZWwhuVMcNIYxRQZXlrKmritOGtpQR0JoZbUWjRVtyoVWdHdEAb7vcn4KuqhtUns-a4GMM0MkpuEGFk6REzpDkQc6Q5AxJniHl0NM5BPmxzCDIaBzkWtaF3EJa7_6L_wJmoHM3</recordid><startdate>202505</startdate><enddate>202505</enddate><creator>Jin, Jiaobo</creator><creator>Zhu, Tiantian</creator><creator>Yuan, Qixuan</creator><creator>Chen, Tieming</creator><creator>Lv, Mingqi</creator><creator>Zheng, Chenbin</creator><creator>Mei, Jian-Ping</creator><creator>Pan, Xiang</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3360-4025</orcidid><orcidid>https://orcid.org/0000-0002-8657-662X</orcidid><orcidid>https://orcid.org/0000-0003-1678-6215</orcidid></search><sort><creationdate>202505</creationdate><title>PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems</title><author>Jin, Jiaobo ; Zhu, Tiantian ; Yuan, Qixuan ; Chen, Tieming ; Lv, Mingqi ; Zheng, Chenbin ; Mei, Jian-Ping ; Pan, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c969-87caf7c0066181ad76543371519160ebb6cbd85b89278ba471585e79f1011eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Advanced persistent threats</topic><topic>Data compression</topic><topic>Data explosion problem</topic><topic>Multi-perspective collaboration</topic><topic>Provenance graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Jiaobo</creatorcontrib><creatorcontrib>Zhu, Tiantian</creatorcontrib><creatorcontrib>Yuan, Qixuan</creatorcontrib><creatorcontrib>Chen, Tieming</creatorcontrib><creatorcontrib>Lv, Mingqi</creatorcontrib><creatorcontrib>Zheng, Chenbin</creatorcontrib><creatorcontrib>Mei, Jian-Ping</creatorcontrib><creatorcontrib>Pan, Xiang</creatorcontrib><collection>CrossRef</collection><jtitle>Computers & security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Jiaobo</au><au>Zhu, Tiantian</au><au>Yuan, Qixuan</au><au>Chen, Tieming</au><au>Lv, Mingqi</au><au>Zheng, Chenbin</au><au>Mei, Jian-Ping</au><au>Pan, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems</atitle><jtitle>Computers & security</jtitle><date>2025-05</date><risdate>2025</risdate><volume>152</volume><spage>104359</spage><pages>104359-</pages><artnum>104359</artnum><issn>0167-4048</issn><abstract>In recent years, advanced persistent threats (APTs) have frequently occurred with increasing severity on a global scale. Provenance graph-based APT detection systems have demonstrated significant effectiveness. However, current data compression methods face challenges in processing massive data volumes, including compression imbalance, limited generality, and semantic loss. To address these challenges, we propose PDCleaner, a multi-perspective collaborative data compression method designed to preserve the semantics of provenance graphs. This method comprises three core strategies: a global semantics-driven event deletion strategy, a behavior-preserving entity aggregation strategy, and a similarity-based event chain merging strategy. These strategies collaboratively compress data across three perspectives: events, entities, and event chains, resulting in concise and generalizable datasets suitable for model training and prediction. Experimental results indicate that the multi-perspective collaborative compression method achieves a compression rate of 14.43X while maintaining an average semantic loss of only 4.98%, significantly reducing data size and preserving provenance graph semantics. Furthermore, in a deep learning-based threat detection model, this method reduces training time by up to 20.22% and improves the F1 score by 0.051, offering an optimal data foundation for efficient and accurate threat detection.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cose.2025.104359</doi><orcidid>https://orcid.org/0000-0002-3360-4025</orcidid><orcidid>https://orcid.org/0000-0002-8657-662X</orcidid><orcidid>https://orcid.org/0000-0003-1678-6215</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-4048 |
ispartof | Computers & security, 2025-05, Vol.152, p.104359, Article 104359 |
issn | 0167-4048 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cose_2025_104359 |
source | ScienceDirect Freedom Collection |
subjects | Advanced persistent threats Data compression Data explosion problem Multi-perspective collaboration Provenance graph |
title | PDCleaner: A multi-view collaborative data compression method for provenance graph-based APT detection systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-26T01%3A41%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PDCleaner:%20A%20multi-view%20collaborative%20data%20compression%20method%20for%20provenance%20graph-based%20APT%20detection%20systems&rft.jtitle=Computers%20&%20security&rft.au=Jin,%20Jiaobo&rft.date=2025-05&rft.volume=152&rft.spage=104359&rft.pages=104359-&rft.artnum=104359&rft.issn=0167-4048&rft_id=info:doi/10.1016/j.cose.2025.104359&rft_dat=%3Celsevier_cross%3ES0167404825000483%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c969-87caf7c0066181ad76543371519160ebb6cbd85b89278ba471585e79f1011eb33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |