Loading…

RI−Calc: A user friendly software and web server for refractive index calculation

The refractive index of an optical medium is essential for studying a variety of physical phenomena. One useful method for determining the refractive index of scalar materials (i.e., materials which are characterized by a scalar dielectric function) is to employ the Kramers−Kronig (K−K) relations. T...

Full description

Saved in:
Bibliographic Details
Published in:Computer physics communications 2024-05, Vol.298, p.109100, Article 109100
Main Authors: Benatto, Leandro, Mesquita, Omar, Roman, Lucimara S., Koehler, Marlus, Capaz, Rodrigo B., Candiotto, Graziâni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c297t-269d4b024501ea57b383a4087c16784e70de1f138d6a46b77661171a42447b233
cites cdi_FETCH-LOGICAL-c297t-269d4b024501ea57b383a4087c16784e70de1f138d6a46b77661171a42447b233
container_end_page
container_issue
container_start_page 109100
container_title Computer physics communications
container_volume 298
creator Benatto, Leandro
Mesquita, Omar
Roman, Lucimara S.
Koehler, Marlus
Capaz, Rodrigo B.
Candiotto, Graziâni
description The refractive index of an optical medium is essential for studying a variety of physical phenomena. One useful method for determining the refractive index of scalar materials (i.e., materials which are characterized by a scalar dielectric function) is to employ the Kramers−Kronig (K−K) relations. The K−K method is particularly useful in cases where ellipsometric measurements are unavailable, a situation that frequently occurs in many laboratories. Although some packages can perform this calculation, they usually lack a graphical interface and are complex to implement and use. Those deficiencies inhibit their utilization by a plethora of researchers unfamiliar with programming languages. To address the aforementioned gap, we have developed the Refractive Index Calculator (RI−Calc) program that provides an intuitive and user−friendly interface. The RI−Calc program allows users to input the absorption coefficient spectrum and then easily calculate the complex refractive index and the complex relative permittivity of a broad range of thin films, including of molecules, polymers, blends, and perovskites. The program has been thoroughly tested, taking into account the Lorentz oscillator model and experimental data from a materials' refractive index database, demonstrating consistent outcomes. It is compatible with Windows, Unix, and macOS operating systems. You can download the RI−Calc binaries from our GitHub repository or conveniently access the program through our dedicated web server at nanocalc.org. •Refractive index and relative permittivity determination from the absorption coefficient spectrum.•The method has been validated for molecular acceptors, polymers, blends and perovskites.•Methodology in agreement with experimental data and the Lorentz oscillator model.•Free license code that can be used via a dedicated web server or downloading the binary files.•Intuitive and user−friendly interface.
doi_str_mv 10.1016/j.cpc.2024.109100
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cpc_2024_109100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010465524000237</els_id><sourcerecordid>S0010465524000237</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-269d4b024501ea57b383a4087c16784e70de1f138d6a46b77661171a42447b233</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHa-QMpM4tgJrKqKn0qVkPhZW449kVyFprLTlt6ANUfkJLgqa1aj0cx7eu9j7BphgoDyZjmxazvJIRdprxHghI2wUnWW10KcshEAQiZkWZ6zixiXAKBUXYzY68v85-t7Zjp7y6d8EynwNnhauW7PY98OOxOIm5XjO2p4um4PD33ggdpg7OC3xP3K0Se3yWLTmcH3q0t21pou0tXfHLP3h_u32VO2eH6cz6aLzOa1GrJc1k40KXEJSKZUTVEVRkClLEpVCVLgCFssKieNkI1SUiIqNCIXQjV5UYwZHn1t6GNMifQ6-A8T9hpBH6jopU5U9IGKPlJJmrujhlKwraego011LTkfyA7a9f4f9S-gu2nK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>RI−Calc: A user friendly software and web server for refractive index calculation</title><source>Elsevier</source><creator>Benatto, Leandro ; Mesquita, Omar ; Roman, Lucimara S. ; Koehler, Marlus ; Capaz, Rodrigo B. ; Candiotto, Graziâni</creator><creatorcontrib>Benatto, Leandro ; Mesquita, Omar ; Roman, Lucimara S. ; Koehler, Marlus ; Capaz, Rodrigo B. ; Candiotto, Graziâni</creatorcontrib><description>The refractive index of an optical medium is essential for studying a variety of physical phenomena. One useful method for determining the refractive index of scalar materials (i.e., materials which are characterized by a scalar dielectric function) is to employ the Kramers−Kronig (K−K) relations. The K−K method is particularly useful in cases where ellipsometric measurements are unavailable, a situation that frequently occurs in many laboratories. Although some packages can perform this calculation, they usually lack a graphical interface and are complex to implement and use. Those deficiencies inhibit their utilization by a plethora of researchers unfamiliar with programming languages. To address the aforementioned gap, we have developed the Refractive Index Calculator (RI−Calc) program that provides an intuitive and user−friendly interface. The RI−Calc program allows users to input the absorption coefficient spectrum and then easily calculate the complex refractive index and the complex relative permittivity of a broad range of thin films, including of molecules, polymers, blends, and perovskites. The program has been thoroughly tested, taking into account the Lorentz oscillator model and experimental data from a materials' refractive index database, demonstrating consistent outcomes. It is compatible with Windows, Unix, and macOS operating systems. You can download the RI−Calc binaries from our GitHub repository or conveniently access the program through our dedicated web server at nanocalc.org. •Refractive index and relative permittivity determination from the absorption coefficient spectrum.•The method has been validated for molecular acceptors, polymers, blends and perovskites.•Methodology in agreement with experimental data and the Lorentz oscillator model.•Free license code that can be used via a dedicated web server or downloading the binary files.•Intuitive and user−friendly interface.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2024.109100</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Absorption coefficient ; Kramers−Kronig ; Lorentz oscillator model ; Refractive index</subject><ispartof>Computer physics communications, 2024-05, Vol.298, p.109100, Article 109100</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c297t-269d4b024501ea57b383a4087c16784e70de1f138d6a46b77661171a42447b233</citedby><cites>FETCH-LOGICAL-c297t-269d4b024501ea57b383a4087c16784e70de1f138d6a46b77661171a42447b233</cites><orcidid>0000-0001-6755-660X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Benatto, Leandro</creatorcontrib><creatorcontrib>Mesquita, Omar</creatorcontrib><creatorcontrib>Roman, Lucimara S.</creatorcontrib><creatorcontrib>Koehler, Marlus</creatorcontrib><creatorcontrib>Capaz, Rodrigo B.</creatorcontrib><creatorcontrib>Candiotto, Graziâni</creatorcontrib><title>RI−Calc: A user friendly software and web server for refractive index calculation</title><title>Computer physics communications</title><description>The refractive index of an optical medium is essential for studying a variety of physical phenomena. One useful method for determining the refractive index of scalar materials (i.e., materials which are characterized by a scalar dielectric function) is to employ the Kramers−Kronig (K−K) relations. The K−K method is particularly useful in cases where ellipsometric measurements are unavailable, a situation that frequently occurs in many laboratories. Although some packages can perform this calculation, they usually lack a graphical interface and are complex to implement and use. Those deficiencies inhibit their utilization by a plethora of researchers unfamiliar with programming languages. To address the aforementioned gap, we have developed the Refractive Index Calculator (RI−Calc) program that provides an intuitive and user−friendly interface. The RI−Calc program allows users to input the absorption coefficient spectrum and then easily calculate the complex refractive index and the complex relative permittivity of a broad range of thin films, including of molecules, polymers, blends, and perovskites. The program has been thoroughly tested, taking into account the Lorentz oscillator model and experimental data from a materials' refractive index database, demonstrating consistent outcomes. It is compatible with Windows, Unix, and macOS operating systems. You can download the RI−Calc binaries from our GitHub repository or conveniently access the program through our dedicated web server at nanocalc.org. •Refractive index and relative permittivity determination from the absorption coefficient spectrum.•The method has been validated for molecular acceptors, polymers, blends and perovskites.•Methodology in agreement with experimental data and the Lorentz oscillator model.•Free license code that can be used via a dedicated web server or downloading the binary files.•Intuitive and user−friendly interface.</description><subject>Absorption coefficient</subject><subject>Kramers−Kronig</subject><subject>Lorentz oscillator model</subject><subject>Refractive index</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHa-QMpM4tgJrKqKn0qVkPhZW449kVyFprLTlt6ANUfkJLgqa1aj0cx7eu9j7BphgoDyZjmxazvJIRdprxHghI2wUnWW10KcshEAQiZkWZ6zixiXAKBUXYzY68v85-t7Zjp7y6d8EynwNnhauW7PY98OOxOIm5XjO2p4um4PD33ggdpg7OC3xP3K0Se3yWLTmcH3q0t21pou0tXfHLP3h_u32VO2eH6cz6aLzOa1GrJc1k40KXEJSKZUTVEVRkClLEpVCVLgCFssKieNkI1SUiIqNCIXQjV5UYwZHn1t6GNMifQ6-A8T9hpBH6jopU5U9IGKPlJJmrujhlKwraego011LTkfyA7a9f4f9S-gu2nK</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Benatto, Leandro</creator><creator>Mesquita, Omar</creator><creator>Roman, Lucimara S.</creator><creator>Koehler, Marlus</creator><creator>Capaz, Rodrigo B.</creator><creator>Candiotto, Graziâni</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6755-660X</orcidid></search><sort><creationdate>202405</creationdate><title>RI−Calc: A user friendly software and web server for refractive index calculation</title><author>Benatto, Leandro ; Mesquita, Omar ; Roman, Lucimara S. ; Koehler, Marlus ; Capaz, Rodrigo B. ; Candiotto, Graziâni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-269d4b024501ea57b383a4087c16784e70de1f138d6a46b77661171a42447b233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption coefficient</topic><topic>Kramers−Kronig</topic><topic>Lorentz oscillator model</topic><topic>Refractive index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benatto, Leandro</creatorcontrib><creatorcontrib>Mesquita, Omar</creatorcontrib><creatorcontrib>Roman, Lucimara S.</creatorcontrib><creatorcontrib>Koehler, Marlus</creatorcontrib><creatorcontrib>Capaz, Rodrigo B.</creatorcontrib><creatorcontrib>Candiotto, Graziâni</creatorcontrib><collection>CrossRef</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benatto, Leandro</au><au>Mesquita, Omar</au><au>Roman, Lucimara S.</au><au>Koehler, Marlus</au><au>Capaz, Rodrigo B.</au><au>Candiotto, Graziâni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RI−Calc: A user friendly software and web server for refractive index calculation</atitle><jtitle>Computer physics communications</jtitle><date>2024-05</date><risdate>2024</risdate><volume>298</volume><spage>109100</spage><pages>109100-</pages><artnum>109100</artnum><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>The refractive index of an optical medium is essential for studying a variety of physical phenomena. One useful method for determining the refractive index of scalar materials (i.e., materials which are characterized by a scalar dielectric function) is to employ the Kramers−Kronig (K−K) relations. The K−K method is particularly useful in cases where ellipsometric measurements are unavailable, a situation that frequently occurs in many laboratories. Although some packages can perform this calculation, they usually lack a graphical interface and are complex to implement and use. Those deficiencies inhibit their utilization by a plethora of researchers unfamiliar with programming languages. To address the aforementioned gap, we have developed the Refractive Index Calculator (RI−Calc) program that provides an intuitive and user−friendly interface. The RI−Calc program allows users to input the absorption coefficient spectrum and then easily calculate the complex refractive index and the complex relative permittivity of a broad range of thin films, including of molecules, polymers, blends, and perovskites. The program has been thoroughly tested, taking into account the Lorentz oscillator model and experimental data from a materials' refractive index database, demonstrating consistent outcomes. It is compatible with Windows, Unix, and macOS operating systems. You can download the RI−Calc binaries from our GitHub repository or conveniently access the program through our dedicated web server at nanocalc.org. •Refractive index and relative permittivity determination from the absorption coefficient spectrum.•The method has been validated for molecular acceptors, polymers, blends and perovskites.•Methodology in agreement with experimental data and the Lorentz oscillator model.•Free license code that can be used via a dedicated web server or downloading the binary files.•Intuitive and user−friendly interface.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2024.109100</doi><orcidid>https://orcid.org/0000-0001-6755-660X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-4655
ispartof Computer physics communications, 2024-05, Vol.298, p.109100, Article 109100
issn 0010-4655
1879-2944
language eng
recordid cdi_crossref_primary_10_1016_j_cpc_2024_109100
source Elsevier
subjects Absorption coefficient
Kramers−Kronig
Lorentz oscillator model
Refractive index
title RI−Calc: A user friendly software and web server for refractive index calculation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A50%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RI%E2%88%92Calc:%20A%20user%20friendly%20software%20and%20web%20server%20for%20refractive%20index%20calculation&rft.jtitle=Computer%20physics%20communications&rft.au=Benatto,%20Leandro&rft.date=2024-05&rft.volume=298&rft.spage=109100&rft.pages=109100-&rft.artnum=109100&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2024.109100&rft_dat=%3Celsevier_cross%3ES0010465524000237%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c297t-269d4b024501ea57b383a4087c16784e70de1f138d6a46b77661171a42447b233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true