Loading…

g-C3N4/MnFe2O4 p-n hollow stratified heterojunction to improve the photocatalytic CO2 reduction activity

[Display omitted] •g-C3N4 nanotubes have large specific surface area and more active sites.•p-n heterojunction interface generates electric field, accelerates electron and hole transfer, and inhibits carrier recombination.•The hollow hierarchical heterogeneous structure shortens the carrier migratio...

Full description

Saved in:
Bibliographic Details
Published in:Chemical physics letters 2023-09, Vol.827, p.140698, Article 140698
Main Authors: Liu, Zhiyu, Yang, Yanqiu, Guo, Zhiqiang, Kong, Lingru, Song, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c306t-448e9d36aa701fef0f7d9374c63d49796adfccf9e21a98b820c1f64c3794e6643
cites cdi_FETCH-LOGICAL-c306t-448e9d36aa701fef0f7d9374c63d49796adfccf9e21a98b820c1f64c3794e6643
container_end_page
container_issue
container_start_page 140698
container_title Chemical physics letters
container_volume 827
creator Liu, Zhiyu
Yang, Yanqiu
Guo, Zhiqiang
Kong, Lingru
Song, Peng
description [Display omitted] •g-C3N4 nanotubes have large specific surface area and more active sites.•p-n heterojunction interface generates electric field, accelerates electron and hole transfer, and inhibits carrier recombination.•The hollow hierarchical heterogeneous structure shortens the carrier migration path, which is conducive to charge separation and transfer. Graphite carbon nitride (g-C3N4) is considered as a promising photocatalyst for CO2 reduction. However, they have problems such as small surface area and fast electron hole recombination rate, so how to improve the photocatalytic efficiency of g-C3N4 remains a great challenge. In this paper, g-C3N4/MnFe2O4 p-n heterojunction composites were synthesized successfully, and their photocatalytic activity for CO2 reduction was tested. We constructed g-C3N4 nanotubes to increase its specific surface area and increase the active sites available for reaction. The structure of p-n heterojunction promotes electron hole separation. The results indicate that under visible light irradiation, CO yield of g-C3N4/MnFe2O4 composite can reach 1136.8 μmol h−1 g−1 when the molar ratio of g-C3N4 microtubules to MnFe2O4 is 10:3, which is 14 times of g-C3N4 microtubules and 29 times of g-C3N4. This study provides some guidance for the design of g-C3N4 based heterojunction.
doi_str_mv 10.1016/j.cplett.2023.140698
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cplett_2023_140698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0009261423004037</els_id><sourcerecordid>S0009261423004037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c306t-448e9d36aa701fef0f7d9374c63d49796adfccf9e21a98b820c1f64c3794e6643</originalsourceid><addsrcrecordid>eNp9kEFLwzAcxYMoOKffwEO-QLukiWlzEaQ4J0x30XOIyT82pWtKmk327e2oZ0-PB-89Hj-E7inJKaFi1eZm6CClvCAFyyknQlYXaEGrkmWc8-oSLQghMisE5dfoZhzbyVL2QBeo-c5q9s5Xb_0aih3HQ9bjJnRd-MFjijp558HiBhLE0B56k3zocQrY74cYjoBTA3hoQgpGJ92dkje43hU4gj3MWT3J0afTLbpyuhvh7k-X6HP9_FFvsu3u5bV-2maGEZGmuxVIy4TWJaEOHHGllazkRjDLZSmFts4YJ6GgWlZfVUEMdYIbVkoOQnC2RHzeNTGMYwSnhuj3Op4UJepMS7VqpqXOtNRMa6o9zjWYvh09RDUaD70B6yOYpGzw_w_8AnqxdiI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>g-C3N4/MnFe2O4 p-n hollow stratified heterojunction to improve the photocatalytic CO2 reduction activity</title><source>ScienceDirect Journals</source><creator>Liu, Zhiyu ; Yang, Yanqiu ; Guo, Zhiqiang ; Kong, Lingru ; Song, Peng</creator><creatorcontrib>Liu, Zhiyu ; Yang, Yanqiu ; Guo, Zhiqiang ; Kong, Lingru ; Song, Peng</creatorcontrib><description>[Display omitted] •g-C3N4 nanotubes have large specific surface area and more active sites.•p-n heterojunction interface generates electric field, accelerates electron and hole transfer, and inhibits carrier recombination.•The hollow hierarchical heterogeneous structure shortens the carrier migration path, which is conducive to charge separation and transfer. Graphite carbon nitride (g-C3N4) is considered as a promising photocatalyst for CO2 reduction. However, they have problems such as small surface area and fast electron hole recombination rate, so how to improve the photocatalytic efficiency of g-C3N4 remains a great challenge. In this paper, g-C3N4/MnFe2O4 p-n heterojunction composites were synthesized successfully, and their photocatalytic activity for CO2 reduction was tested. We constructed g-C3N4 nanotubes to increase its specific surface area and increase the active sites available for reaction. The structure of p-n heterojunction promotes electron hole separation. The results indicate that under visible light irradiation, CO yield of g-C3N4/MnFe2O4 composite can reach 1136.8 μmol h−1 g−1 when the molar ratio of g-C3N4 microtubules to MnFe2O4 is 10:3, which is 14 times of g-C3N4 microtubules and 29 times of g-C3N4. This study provides some guidance for the design of g-C3N4 based heterojunction.</description><identifier>ISSN: 0009-2614</identifier><identifier>EISSN: 1873-4448</identifier><identifier>DOI: 10.1016/j.cplett.2023.140698</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>g-C3N4 nanotubes ; MnFe2O4 ; P-n heterojunction ; Photocatalytic CO2 reduction</subject><ispartof>Chemical physics letters, 2023-09, Vol.827, p.140698, Article 140698</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c306t-448e9d36aa701fef0f7d9374c63d49796adfccf9e21a98b820c1f64c3794e6643</citedby><cites>FETCH-LOGICAL-c306t-448e9d36aa701fef0f7d9374c63d49796adfccf9e21a98b820c1f64c3794e6643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Zhiyu</creatorcontrib><creatorcontrib>Yang, Yanqiu</creatorcontrib><creatorcontrib>Guo, Zhiqiang</creatorcontrib><creatorcontrib>Kong, Lingru</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><title>g-C3N4/MnFe2O4 p-n hollow stratified heterojunction to improve the photocatalytic CO2 reduction activity</title><title>Chemical physics letters</title><description>[Display omitted] •g-C3N4 nanotubes have large specific surface area and more active sites.•p-n heterojunction interface generates electric field, accelerates electron and hole transfer, and inhibits carrier recombination.•The hollow hierarchical heterogeneous structure shortens the carrier migration path, which is conducive to charge separation and transfer. Graphite carbon nitride (g-C3N4) is considered as a promising photocatalyst for CO2 reduction. However, they have problems such as small surface area and fast electron hole recombination rate, so how to improve the photocatalytic efficiency of g-C3N4 remains a great challenge. In this paper, g-C3N4/MnFe2O4 p-n heterojunction composites were synthesized successfully, and their photocatalytic activity for CO2 reduction was tested. We constructed g-C3N4 nanotubes to increase its specific surface area and increase the active sites available for reaction. The structure of p-n heterojunction promotes electron hole separation. The results indicate that under visible light irradiation, CO yield of g-C3N4/MnFe2O4 composite can reach 1136.8 μmol h−1 g−1 when the molar ratio of g-C3N4 microtubules to MnFe2O4 is 10:3, which is 14 times of g-C3N4 microtubules and 29 times of g-C3N4. This study provides some guidance for the design of g-C3N4 based heterojunction.</description><subject>g-C3N4 nanotubes</subject><subject>MnFe2O4</subject><subject>P-n heterojunction</subject><subject>Photocatalytic CO2 reduction</subject><issn>0009-2614</issn><issn>1873-4448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLwzAcxYMoOKffwEO-QLukiWlzEaQ4J0x30XOIyT82pWtKmk327e2oZ0-PB-89Hj-E7inJKaFi1eZm6CClvCAFyyknQlYXaEGrkmWc8-oSLQghMisE5dfoZhzbyVL2QBeo-c5q9s5Xb_0aih3HQ9bjJnRd-MFjijp558HiBhLE0B56k3zocQrY74cYjoBTA3hoQgpGJ92dkje43hU4gj3MWT3J0afTLbpyuhvh7k-X6HP9_FFvsu3u5bV-2maGEZGmuxVIy4TWJaEOHHGllazkRjDLZSmFts4YJ6GgWlZfVUEMdYIbVkoOQnC2RHzeNTGMYwSnhuj3Op4UJepMS7VqpqXOtNRMa6o9zjWYvh09RDUaD70B6yOYpGzw_w_8AnqxdiI</recordid><startdate>20230916</startdate><enddate>20230916</enddate><creator>Liu, Zhiyu</creator><creator>Yang, Yanqiu</creator><creator>Guo, Zhiqiang</creator><creator>Kong, Lingru</creator><creator>Song, Peng</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230916</creationdate><title>g-C3N4/MnFe2O4 p-n hollow stratified heterojunction to improve the photocatalytic CO2 reduction activity</title><author>Liu, Zhiyu ; Yang, Yanqiu ; Guo, Zhiqiang ; Kong, Lingru ; Song, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c306t-448e9d36aa701fef0f7d9374c63d49796adfccf9e21a98b820c1f64c3794e6643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>g-C3N4 nanotubes</topic><topic>MnFe2O4</topic><topic>P-n heterojunction</topic><topic>Photocatalytic CO2 reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhiyu</creatorcontrib><creatorcontrib>Yang, Yanqiu</creatorcontrib><creatorcontrib>Guo, Zhiqiang</creatorcontrib><creatorcontrib>Kong, Lingru</creatorcontrib><creatorcontrib>Song, Peng</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhiyu</au><au>Yang, Yanqiu</au><au>Guo, Zhiqiang</au><au>Kong, Lingru</au><au>Song, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>g-C3N4/MnFe2O4 p-n hollow stratified heterojunction to improve the photocatalytic CO2 reduction activity</atitle><jtitle>Chemical physics letters</jtitle><date>2023-09-16</date><risdate>2023</risdate><volume>827</volume><spage>140698</spage><pages>140698-</pages><artnum>140698</artnum><issn>0009-2614</issn><eissn>1873-4448</eissn><abstract>[Display omitted] •g-C3N4 nanotubes have large specific surface area and more active sites.•p-n heterojunction interface generates electric field, accelerates electron and hole transfer, and inhibits carrier recombination.•The hollow hierarchical heterogeneous structure shortens the carrier migration path, which is conducive to charge separation and transfer. Graphite carbon nitride (g-C3N4) is considered as a promising photocatalyst for CO2 reduction. However, they have problems such as small surface area and fast electron hole recombination rate, so how to improve the photocatalytic efficiency of g-C3N4 remains a great challenge. In this paper, g-C3N4/MnFe2O4 p-n heterojunction composites were synthesized successfully, and their photocatalytic activity for CO2 reduction was tested. We constructed g-C3N4 nanotubes to increase its specific surface area and increase the active sites available for reaction. The structure of p-n heterojunction promotes electron hole separation. The results indicate that under visible light irradiation, CO yield of g-C3N4/MnFe2O4 composite can reach 1136.8 μmol h−1 g−1 when the molar ratio of g-C3N4 microtubules to MnFe2O4 is 10:3, which is 14 times of g-C3N4 microtubules and 29 times of g-C3N4. This study provides some guidance for the design of g-C3N4 based heterojunction.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cplett.2023.140698</doi></addata></record>
fulltext fulltext
identifier ISSN: 0009-2614
ispartof Chemical physics letters, 2023-09, Vol.827, p.140698, Article 140698
issn 0009-2614
1873-4448
language eng
recordid cdi_crossref_primary_10_1016_j_cplett_2023_140698
source ScienceDirect Journals
subjects g-C3N4 nanotubes
MnFe2O4
P-n heterojunction
Photocatalytic CO2 reduction
title g-C3N4/MnFe2O4 p-n hollow stratified heterojunction to improve the photocatalytic CO2 reduction activity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=g-C3N4/MnFe2O4%20p-n%20hollow%20stratified%20heterojunction%20to%20improve%20the%20photocatalytic%20CO2%20reduction%20activity&rft.jtitle=Chemical%20physics%20letters&rft.au=Liu,%20Zhiyu&rft.date=2023-09-16&rft.volume=827&rft.spage=140698&rft.pages=140698-&rft.artnum=140698&rft.issn=0009-2614&rft.eissn=1873-4448&rft_id=info:doi/10.1016/j.cplett.2023.140698&rft_dat=%3Celsevier_cross%3ES0009261423004037%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c306t-448e9d36aa701fef0f7d9374c63d49796adfccf9e21a98b820c1f64c3794e6643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true