Loading…

Theoretical investigation of HTS compact microstrip antennas printed on anisotropic substrates using hybrid cavity model

•Effect of the operating temperature on the resonant frequency of a C-shaped superconductivity microstrip antenna.•Effect of the uniaxial substrate material and its thickness on the surface resistance and surface reactance.•The operating temperature significantly impacts the resonant frequency of th...

Full description

Saved in:
Bibliographic Details
Published in:Cryogenics (Guildford) 2024-10, Vol.143, p.103935, Article 103935
Main Authors: Bedra, Mohamed, Bedra, Sami, Fortaki, Tarek, Arar, Djemai, Benatia, Djamel, Bediaf, Akram
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c193t-7dd105a898730db35663f79937f2a472176e57d54e9311e6dd86b710c5664ed43
container_end_page
container_issue
container_start_page 103935
container_title Cryogenics (Guildford)
container_volume 143
creator Bedra, Mohamed
Bedra, Sami
Fortaki, Tarek
Arar, Djemai
Benatia, Djamel
Bediaf, Akram
description •Effect of the operating temperature on the resonant frequency of a C-shaped superconductivity microstrip antenna.•Effect of the uniaxial substrate material and its thickness on the surface resistance and surface reactance.•The operating temperature significantly impacts the resonant frequency of the compact microstrip antenna.•Selecting the correct operating temperature for a superconducting microstrip antenna ensures optimal performance in compact designs. This work explores the effects of a compact, superconducting C-shaped patch printed on uniaxial anisotropic substrate, utilizing two uniaxial substrate materials: boron nitride and magnesium fluoride. This study employed the superconducting material BSCCO (2212 BSCCO crystal), with a critical temperature of 95 K. Using the hybrid cavity model, we identified and extracted two key parameters: the resonance frequency of conductive elements and the superconducting resonance frequency. We analyzed the impact of the operating temperature on the resonant frequency of a C-shaped superconductivity microstrip antenna, as well as the effect of the uniaxial substrate material and its thickness on the surface resistance and surface reactance. The results showed that temperature significantly affects the resonant frequency of the compact antenna. Our research highlighted the importance of selecting the correct operating temperature for a superconducting microstrip antenna to ensure optimal performance in compact microstrip antenna designs.
doi_str_mv 10.1016/j.cryogenics.2024.103935
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cryogenics_2024_103935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011227524001553</els_id><sourcerecordid>S0011227524001553</sourcerecordid><originalsourceid>FETCH-LOGICAL-c193t-7dd105a898730db35663f79937f2a472176e57d54e9311e6dd86b710c5664ed43</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhH0AifLzDn6BFP8kcXKECihSJQ6Us-XYm3arxo5st6JvT6oiceS0o9XMaPQRQjmbc8brx93cxlPYgEeb5oKJcnrLVlZXZMYY54UQqrohtyntGGOlqMWMfK-3ECJktGZP0R8hZdyYjMHT0NPl-pPaMIzGZjqgjSHliCM1PoP3JtEx4iQdndzGYwo5hhEtTYduMpoMiR4S-g3dnrqIjlpzxHyiQ3CwvyfXvdknePi9d-Tr9WW9WBarj7f3xdOqsLyVuVDOcVaZpm2UZK6TVV3LXrWtVL0wpRJc1VApV5XQSs6hdq6pO8WZnYwluFLekebSe16fIvR6Gj2YeNKc6TM1vdN_1PSZmr5Qm6LPlyhM-44IUSeL4C04jGCzdgH_L_kB04KARQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theoretical investigation of HTS compact microstrip antennas printed on anisotropic substrates using hybrid cavity model</title><source>ScienceDirect Journals</source><creator>Bedra, Mohamed ; Bedra, Sami ; Fortaki, Tarek ; Arar, Djemai ; Benatia, Djamel ; Bediaf, Akram</creator><creatorcontrib>Bedra, Mohamed ; Bedra, Sami ; Fortaki, Tarek ; Arar, Djemai ; Benatia, Djamel ; Bediaf, Akram</creatorcontrib><description>•Effect of the operating temperature on the resonant frequency of a C-shaped superconductivity microstrip antenna.•Effect of the uniaxial substrate material and its thickness on the surface resistance and surface reactance.•The operating temperature significantly impacts the resonant frequency of the compact microstrip antenna.•Selecting the correct operating temperature for a superconducting microstrip antenna ensures optimal performance in compact designs. This work explores the effects of a compact, superconducting C-shaped patch printed on uniaxial anisotropic substrate, utilizing two uniaxial substrate materials: boron nitride and magnesium fluoride. This study employed the superconducting material BSCCO (2212 BSCCO crystal), with a critical temperature of 95 K. Using the hybrid cavity model, we identified and extracted two key parameters: the resonance frequency of conductive elements and the superconducting resonance frequency. We analyzed the impact of the operating temperature on the resonant frequency of a C-shaped superconductivity microstrip antenna, as well as the effect of the uniaxial substrate material and its thickness on the surface resistance and surface reactance. The results showed that temperature significantly affects the resonant frequency of the compact antenna. Our research highlighted the importance of selecting the correct operating temperature for a superconducting microstrip antenna to ensure optimal performance in compact microstrip antenna designs.</description><identifier>ISSN: 0011-2275</identifier><identifier>DOI: 10.1016/j.cryogenics.2024.103935</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>C-shape microstrip antennas ; Critical temperature ; Modified cavity model ; Patch thickness ; Resonant frequency ; Substrate thickness ; Superconductivity ; Surface reactance ; Surface resistance ; Uniaxial anisotropic substrate</subject><ispartof>Cryogenics (Guildford), 2024-10, Vol.143, p.103935, Article 103935</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c193t-7dd105a898730db35663f79937f2a472176e57d54e9311e6dd86b710c5664ed43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bedra, Mohamed</creatorcontrib><creatorcontrib>Bedra, Sami</creatorcontrib><creatorcontrib>Fortaki, Tarek</creatorcontrib><creatorcontrib>Arar, Djemai</creatorcontrib><creatorcontrib>Benatia, Djamel</creatorcontrib><creatorcontrib>Bediaf, Akram</creatorcontrib><title>Theoretical investigation of HTS compact microstrip antennas printed on anisotropic substrates using hybrid cavity model</title><title>Cryogenics (Guildford)</title><description>•Effect of the operating temperature on the resonant frequency of a C-shaped superconductivity microstrip antenna.•Effect of the uniaxial substrate material and its thickness on the surface resistance and surface reactance.•The operating temperature significantly impacts the resonant frequency of the compact microstrip antenna.•Selecting the correct operating temperature for a superconducting microstrip antenna ensures optimal performance in compact designs. This work explores the effects of a compact, superconducting C-shaped patch printed on uniaxial anisotropic substrate, utilizing two uniaxial substrate materials: boron nitride and magnesium fluoride. This study employed the superconducting material BSCCO (2212 BSCCO crystal), with a critical temperature of 95 K. Using the hybrid cavity model, we identified and extracted two key parameters: the resonance frequency of conductive elements and the superconducting resonance frequency. We analyzed the impact of the operating temperature on the resonant frequency of a C-shaped superconductivity microstrip antenna, as well as the effect of the uniaxial substrate material and its thickness on the surface resistance and surface reactance. The results showed that temperature significantly affects the resonant frequency of the compact antenna. Our research highlighted the importance of selecting the correct operating temperature for a superconducting microstrip antenna to ensure optimal performance in compact microstrip antenna designs.</description><subject>C-shape microstrip antennas</subject><subject>Critical temperature</subject><subject>Modified cavity model</subject><subject>Patch thickness</subject><subject>Resonant frequency</subject><subject>Substrate thickness</subject><subject>Superconductivity</subject><subject>Surface reactance</subject><subject>Surface resistance</subject><subject>Uniaxial anisotropic substrate</subject><issn>0011-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhH0AifLzDn6BFP8kcXKECihSJQ6Us-XYm3arxo5st6JvT6oiceS0o9XMaPQRQjmbc8brx93cxlPYgEeb5oKJcnrLVlZXZMYY54UQqrohtyntGGOlqMWMfK-3ECJktGZP0R8hZdyYjMHT0NPl-pPaMIzGZjqgjSHliCM1PoP3JtEx4iQdndzGYwo5hhEtTYduMpoMiR4S-g3dnrqIjlpzxHyiQ3CwvyfXvdknePi9d-Tr9WW9WBarj7f3xdOqsLyVuVDOcVaZpm2UZK6TVV3LXrWtVL0wpRJc1VApV5XQSs6hdq6pO8WZnYwluFLekebSe16fIvR6Gj2YeNKc6TM1vdN_1PSZmr5Qm6LPlyhM-44IUSeL4C04jGCzdgH_L_kB04KARQ</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Bedra, Mohamed</creator><creator>Bedra, Sami</creator><creator>Fortaki, Tarek</creator><creator>Arar, Djemai</creator><creator>Benatia, Djamel</creator><creator>Bediaf, Akram</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202410</creationdate><title>Theoretical investigation of HTS compact microstrip antennas printed on anisotropic substrates using hybrid cavity model</title><author>Bedra, Mohamed ; Bedra, Sami ; Fortaki, Tarek ; Arar, Djemai ; Benatia, Djamel ; Bediaf, Akram</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c193t-7dd105a898730db35663f79937f2a472176e57d54e9311e6dd86b710c5664ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>C-shape microstrip antennas</topic><topic>Critical temperature</topic><topic>Modified cavity model</topic><topic>Patch thickness</topic><topic>Resonant frequency</topic><topic>Substrate thickness</topic><topic>Superconductivity</topic><topic>Surface reactance</topic><topic>Surface resistance</topic><topic>Uniaxial anisotropic substrate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bedra, Mohamed</creatorcontrib><creatorcontrib>Bedra, Sami</creatorcontrib><creatorcontrib>Fortaki, Tarek</creatorcontrib><creatorcontrib>Arar, Djemai</creatorcontrib><creatorcontrib>Benatia, Djamel</creatorcontrib><creatorcontrib>Bediaf, Akram</creatorcontrib><collection>CrossRef</collection><jtitle>Cryogenics (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bedra, Mohamed</au><au>Bedra, Sami</au><au>Fortaki, Tarek</au><au>Arar, Djemai</au><au>Benatia, Djamel</au><au>Bediaf, Akram</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical investigation of HTS compact microstrip antennas printed on anisotropic substrates using hybrid cavity model</atitle><jtitle>Cryogenics (Guildford)</jtitle><date>2024-10</date><risdate>2024</risdate><volume>143</volume><spage>103935</spage><pages>103935-</pages><artnum>103935</artnum><issn>0011-2275</issn><abstract>•Effect of the operating temperature on the resonant frequency of a C-shaped superconductivity microstrip antenna.•Effect of the uniaxial substrate material and its thickness on the surface resistance and surface reactance.•The operating temperature significantly impacts the resonant frequency of the compact microstrip antenna.•Selecting the correct operating temperature for a superconducting microstrip antenna ensures optimal performance in compact designs. This work explores the effects of a compact, superconducting C-shaped patch printed on uniaxial anisotropic substrate, utilizing two uniaxial substrate materials: boron nitride and magnesium fluoride. This study employed the superconducting material BSCCO (2212 BSCCO crystal), with a critical temperature of 95 K. Using the hybrid cavity model, we identified and extracted two key parameters: the resonance frequency of conductive elements and the superconducting resonance frequency. We analyzed the impact of the operating temperature on the resonant frequency of a C-shaped superconductivity microstrip antenna, as well as the effect of the uniaxial substrate material and its thickness on the surface resistance and surface reactance. The results showed that temperature significantly affects the resonant frequency of the compact antenna. Our research highlighted the importance of selecting the correct operating temperature for a superconducting microstrip antenna to ensure optimal performance in compact microstrip antenna designs.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cryogenics.2024.103935</doi></addata></record>
fulltext fulltext
identifier ISSN: 0011-2275
ispartof Cryogenics (Guildford), 2024-10, Vol.143, p.103935, Article 103935
issn 0011-2275
language eng
recordid cdi_crossref_primary_10_1016_j_cryogenics_2024_103935
source ScienceDirect Journals
subjects C-shape microstrip antennas
Critical temperature
Modified cavity model
Patch thickness
Resonant frequency
Substrate thickness
Superconductivity
Surface reactance
Surface resistance
Uniaxial anisotropic substrate
title Theoretical investigation of HTS compact microstrip antennas printed on anisotropic substrates using hybrid cavity model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20investigation%20of%20HTS%20compact%20microstrip%20antennas%20printed%20on%20anisotropic%20substrates%20using%20hybrid%20cavity%20model&rft.jtitle=Cryogenics%20(Guildford)&rft.au=Bedra,%20Mohamed&rft.date=2024-10&rft.volume=143&rft.spage=103935&rft.pages=103935-&rft.artnum=103935&rft.issn=0011-2275&rft_id=info:doi/10.1016/j.cryogenics.2024.103935&rft_dat=%3Celsevier_cross%3ES0011227524001553%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c193t-7dd105a898730db35663f79937f2a472176e57d54e9311e6dd86b710c5664ed43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true