Loading…

Smooth simultaneous confidence band for the error distribution function in nonparametric regression

A smooth simultaneous confidence band (SCB) is constructed for the distribution of unobserved errors in a nonparametric regression model based on a plug-in kernel distribution estimator. The normalized estimation error process is shown to converge to a Gaussian process. Simulation experiments indica...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 2021-03, Vol.155, p.107106, Article 107106
Main Authors: Gu, Lijie, Wang, Suojin, Yang, Lijian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83
cites cdi_FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83
container_end_page
container_issue
container_start_page 107106
container_title Computational statistics & data analysis
container_volume 155
creator Gu, Lijie
Wang, Suojin
Yang, Lijian
description A smooth simultaneous confidence band (SCB) is constructed for the distribution of unobserved errors in a nonparametric regression model based on a plug-in kernel distribution estimator. The normalized estimation error process is shown to converge to a Gaussian process. Simulation experiments indicate that the proposed SCB not only strikes an intelligent balance between coverage probability and precision, but also achieves surprisingly as much as double efficiency of the classical infeasible SCB. Furthermore, extensive empirical studies are carried out to compare the proposed method with the smooth residual bootstrap method in order to demonstrate the usefulness of each of these methods. As an illustration, the proposed SCB is applied to the Old Faithful geyser data for testing the error distribution.
doi_str_mv 10.1016/j.csda.2020.107106
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_csda_2020_107106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947320301973</els_id><sourcerecordid>S0167947320301973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BT_kDW_Ox3aTgRYpaoeBBPYdsMrEp3aQkWcF_b9Z6ljnMm3nzhpmH0C0lC0pod7dfmGz1ghE2NQQl3RmaUSlYI_iSnaNZHRLNqhX8El3lvCeEsFbIGTJvQ4xlh7MfxkPRAeKYsYnBeQvBAO51sNjFhMsOMKRUkfW5JN-PxceA3RjML_ABhxiOOukBKm1wgs8EOVfuGl04fchw85fn6OPp8X29abavzy_rh21jOCGl4b0VSyl5X0O2IGopOe3bJe207oB1unUryp0VLZXaOkOFZNxKa2lvOyf5HLHTXpNizgmcOiY_6PStKFGTTWqvJpvUZJM62VRF9ycR1Mu-PCSVjZ9etz6BKcpG_5_8BxX0c6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Smooth simultaneous confidence band for the error distribution function in nonparametric regression</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Decision Sciences</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Gu, Lijie ; Wang, Suojin ; Yang, Lijian</creator><creatorcontrib>Gu, Lijie ; Wang, Suojin ; Yang, Lijian</creatorcontrib><description>A smooth simultaneous confidence band (SCB) is constructed for the distribution of unobserved errors in a nonparametric regression model based on a plug-in kernel distribution estimator. The normalized estimation error process is shown to converge to a Gaussian process. Simulation experiments indicate that the proposed SCB not only strikes an intelligent balance between coverage probability and precision, but also achieves surprisingly as much as double efficiency of the classical infeasible SCB. Furthermore, extensive empirical studies are carried out to compare the proposed method with the smooth residual bootstrap method in order to demonstrate the usefulness of each of these methods. As an illustration, the proposed SCB is applied to the Old Faithful geyser data for testing the error distribution.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2020.107106</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Confidence band ; Error distribution ; Kernel ; Local linear ; Residuals</subject><ispartof>Computational statistics &amp; data analysis, 2021-03, Vol.155, p.107106, Article 107106</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83</citedby><cites>FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947320301973$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3440,3564,27924,27925,45972,45991,46003</link.rule.ids></links><search><creatorcontrib>Gu, Lijie</creatorcontrib><creatorcontrib>Wang, Suojin</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><title>Smooth simultaneous confidence band for the error distribution function in nonparametric regression</title><title>Computational statistics &amp; data analysis</title><description>A smooth simultaneous confidence band (SCB) is constructed for the distribution of unobserved errors in a nonparametric regression model based on a plug-in kernel distribution estimator. The normalized estimation error process is shown to converge to a Gaussian process. Simulation experiments indicate that the proposed SCB not only strikes an intelligent balance between coverage probability and precision, but also achieves surprisingly as much as double efficiency of the classical infeasible SCB. Furthermore, extensive empirical studies are carried out to compare the proposed method with the smooth residual bootstrap method in order to demonstrate the usefulness of each of these methods. As an illustration, the proposed SCB is applied to the Old Faithful geyser data for testing the error distribution.</description><subject>Confidence band</subject><subject>Error distribution</subject><subject>Kernel</subject><subject>Local linear</subject><subject>Residuals</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BT_kDW_Ox3aTgRYpaoeBBPYdsMrEp3aQkWcF_b9Z6ljnMm3nzhpmH0C0lC0pod7dfmGz1ghE2NQQl3RmaUSlYI_iSnaNZHRLNqhX8El3lvCeEsFbIGTJvQ4xlh7MfxkPRAeKYsYnBeQvBAO51sNjFhMsOMKRUkfW5JN-PxceA3RjML_ABhxiOOukBKm1wgs8EOVfuGl04fchw85fn6OPp8X29abavzy_rh21jOCGl4b0VSyl5X0O2IGopOe3bJe207oB1unUryp0VLZXaOkOFZNxKa2lvOyf5HLHTXpNizgmcOiY_6PStKFGTTWqvJpvUZJM62VRF9ycR1Mu-PCSVjZ9etz6BKcpG_5_8BxX0c6M</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Gu, Lijie</creator><creator>Wang, Suojin</creator><creator>Yang, Lijian</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202103</creationdate><title>Smooth simultaneous confidence band for the error distribution function in nonparametric regression</title><author>Gu, Lijie ; Wang, Suojin ; Yang, Lijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Confidence band</topic><topic>Error distribution</topic><topic>Kernel</topic><topic>Local linear</topic><topic>Residuals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Lijie</creatorcontrib><creatorcontrib>Wang, Suojin</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><collection>CrossRef</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Lijie</au><au>Wang, Suojin</au><au>Yang, Lijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth simultaneous confidence band for the error distribution function in nonparametric regression</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2021-03</date><risdate>2021</risdate><volume>155</volume><spage>107106</spage><pages>107106-</pages><artnum>107106</artnum><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>A smooth simultaneous confidence band (SCB) is constructed for the distribution of unobserved errors in a nonparametric regression model based on a plug-in kernel distribution estimator. The normalized estimation error process is shown to converge to a Gaussian process. Simulation experiments indicate that the proposed SCB not only strikes an intelligent balance between coverage probability and precision, but also achieves surprisingly as much as double efficiency of the classical infeasible SCB. Furthermore, extensive empirical studies are carried out to compare the proposed method with the smooth residual bootstrap method in order to demonstrate the usefulness of each of these methods. As an illustration, the proposed SCB is applied to the Old Faithful geyser data for testing the error distribution.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2020.107106</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2021-03, Vol.155, p.107106, Article 107106
issn 0167-9473
1872-7352
language eng
recordid cdi_crossref_primary_10_1016_j_csda_2020_107106
source ScienceDirect Freedom Collection; Backfile Package - Decision Sciences; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]
subjects Confidence band
Error distribution
Kernel
Local linear
Residuals
title Smooth simultaneous confidence band for the error distribution function in nonparametric regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20simultaneous%20confidence%20band%20for%20the%20error%20distribution%20function%20in%20nonparametric%20regression&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Gu,%20Lijie&rft.date=2021-03&rft.volume=155&rft.spage=107106&rft.pages=107106-&rft.artnum=107106&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2020.107106&rft_dat=%3Celsevier_cross%3ES0167947320301973%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true