Loading…
Smooth simultaneous confidence band for the error distribution function in nonparametric regression
A smooth simultaneous confidence band (SCB) is constructed for the distribution of unobserved errors in a nonparametric regression model based on a plug-in kernel distribution estimator. The normalized estimation error process is shown to converge to a Gaussian process. Simulation experiments indica...
Saved in:
Published in: | Computational statistics & data analysis 2021-03, Vol.155, p.107106, Article 107106 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83 |
container_end_page | |
container_issue | |
container_start_page | 107106 |
container_title | Computational statistics & data analysis |
container_volume | 155 |
creator | Gu, Lijie Wang, Suojin Yang, Lijian |
description | A smooth simultaneous confidence band (SCB) is constructed for the distribution of unobserved errors in a nonparametric regression model based on a plug-in kernel distribution estimator. The normalized estimation error process is shown to converge to a Gaussian process. Simulation experiments indicate that the proposed SCB not only strikes an intelligent balance between coverage probability and precision, but also achieves surprisingly as much as double efficiency of the classical infeasible SCB. Furthermore, extensive empirical studies are carried out to compare the proposed method with the smooth residual bootstrap method in order to demonstrate the usefulness of each of these methods. As an illustration, the proposed SCB is applied to the Old Faithful geyser data for testing the error distribution. |
doi_str_mv | 10.1016/j.csda.2020.107106 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_csda_2020_107106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947320301973</els_id><sourcerecordid>S0167947320301973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJgrf4BT_kDW_Ox3aTgRYpaoeBBPYdsMrEp3aQkWcF_b9Z6ljnMm3nzhpmH0C0lC0pod7dfmGz1ghE2NQQl3RmaUSlYI_iSnaNZHRLNqhX8El3lvCeEsFbIGTJvQ4xlh7MfxkPRAeKYsYnBeQvBAO51sNjFhMsOMKRUkfW5JN-PxceA3RjML_ABhxiOOukBKm1wgs8EOVfuGl04fchw85fn6OPp8X29abavzy_rh21jOCGl4b0VSyl5X0O2IGopOe3bJe207oB1unUryp0VLZXaOkOFZNxKa2lvOyf5HLHTXpNizgmcOiY_6PStKFGTTWqvJpvUZJM62VRF9ycR1Mu-PCSVjZ9etz6BKcpG_5_8BxX0c6M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Smooth simultaneous confidence band for the error distribution function in nonparametric regression</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Decision Sciences</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Gu, Lijie ; Wang, Suojin ; Yang, Lijian</creator><creatorcontrib>Gu, Lijie ; Wang, Suojin ; Yang, Lijian</creatorcontrib><description>A smooth simultaneous confidence band (SCB) is constructed for the distribution of unobserved errors in a nonparametric regression model based on a plug-in kernel distribution estimator. The normalized estimation error process is shown to converge to a Gaussian process. Simulation experiments indicate that the proposed SCB not only strikes an intelligent balance between coverage probability and precision, but also achieves surprisingly as much as double efficiency of the classical infeasible SCB. Furthermore, extensive empirical studies are carried out to compare the proposed method with the smooth residual bootstrap method in order to demonstrate the usefulness of each of these methods. As an illustration, the proposed SCB is applied to the Old Faithful geyser data for testing the error distribution.</description><identifier>ISSN: 0167-9473</identifier><identifier>EISSN: 1872-7352</identifier><identifier>DOI: 10.1016/j.csda.2020.107106</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Confidence band ; Error distribution ; Kernel ; Local linear ; Residuals</subject><ispartof>Computational statistics & data analysis, 2021-03, Vol.155, p.107106, Article 107106</ispartof><rights>2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83</citedby><cites>FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947320301973$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3429,3440,3564,27924,27925,45972,45991,46003</link.rule.ids></links><search><creatorcontrib>Gu, Lijie</creatorcontrib><creatorcontrib>Wang, Suojin</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><title>Smooth simultaneous confidence band for the error distribution function in nonparametric regression</title><title>Computational statistics & data analysis</title><description>A smooth simultaneous confidence band (SCB) is constructed for the distribution of unobserved errors in a nonparametric regression model based on a plug-in kernel distribution estimator. The normalized estimation error process is shown to converge to a Gaussian process. Simulation experiments indicate that the proposed SCB not only strikes an intelligent balance between coverage probability and precision, but also achieves surprisingly as much as double efficiency of the classical infeasible SCB. Furthermore, extensive empirical studies are carried out to compare the proposed method with the smooth residual bootstrap method in order to demonstrate the usefulness of each of these methods. As an illustration, the proposed SCB is applied to the Old Faithful geyser data for testing the error distribution.</description><subject>Confidence band</subject><subject>Error distribution</subject><subject>Kernel</subject><subject>Local linear</subject><subject>Residuals</subject><issn>0167-9473</issn><issn>1872-7352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJgrf4BT_kDW_Ox3aTgRYpaoeBBPYdsMrEp3aQkWcF_b9Z6ljnMm3nzhpmH0C0lC0pod7dfmGz1ghE2NQQl3RmaUSlYI_iSnaNZHRLNqhX8El3lvCeEsFbIGTJvQ4xlh7MfxkPRAeKYsYnBeQvBAO51sNjFhMsOMKRUkfW5JN-PxceA3RjML_ABhxiOOukBKm1wgs8EOVfuGl04fchw85fn6OPp8X29abavzy_rh21jOCGl4b0VSyl5X0O2IGopOe3bJe207oB1unUryp0VLZXaOkOFZNxKa2lvOyf5HLHTXpNizgmcOiY_6PStKFGTTWqvJpvUZJM62VRF9ycR1Mu-PCSVjZ9etz6BKcpG_5_8BxX0c6M</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Gu, Lijie</creator><creator>Wang, Suojin</creator><creator>Yang, Lijian</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202103</creationdate><title>Smooth simultaneous confidence band for the error distribution function in nonparametric regression</title><author>Gu, Lijie ; Wang, Suojin ; Yang, Lijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Confidence band</topic><topic>Error distribution</topic><topic>Kernel</topic><topic>Local linear</topic><topic>Residuals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Lijie</creatorcontrib><creatorcontrib>Wang, Suojin</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><collection>CrossRef</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Lijie</au><au>Wang, Suojin</au><au>Yang, Lijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth simultaneous confidence band for the error distribution function in nonparametric regression</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2021-03</date><risdate>2021</risdate><volume>155</volume><spage>107106</spage><pages>107106-</pages><artnum>107106</artnum><issn>0167-9473</issn><eissn>1872-7352</eissn><abstract>A smooth simultaneous confidence band (SCB) is constructed for the distribution of unobserved errors in a nonparametric regression model based on a plug-in kernel distribution estimator. The normalized estimation error process is shown to converge to a Gaussian process. Simulation experiments indicate that the proposed SCB not only strikes an intelligent balance between coverage probability and precision, but also achieves surprisingly as much as double efficiency of the classical infeasible SCB. Furthermore, extensive empirical studies are carried out to compare the proposed method with the smooth residual bootstrap method in order to demonstrate the usefulness of each of these methods. As an illustration, the proposed SCB is applied to the Old Faithful geyser data for testing the error distribution.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2020.107106</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2021-03, Vol.155, p.107106, Article 107106 |
issn | 0167-9473 1872-7352 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_csda_2020_107106 |
source | ScienceDirect Freedom Collection; Backfile Package - Decision Sciences; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Confidence band Error distribution Kernel Local linear Residuals |
title | Smooth simultaneous confidence band for the error distribution function in nonparametric regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20simultaneous%20confidence%20band%20for%20the%20error%20distribution%20function%20in%20nonparametric%20regression&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Gu,%20Lijie&rft.date=2021-03&rft.volume=155&rft.spage=107106&rft.pages=107106-&rft.artnum=107106&rft.issn=0167-9473&rft.eissn=1872-7352&rft_id=info:doi/10.1016/j.csda.2020.107106&rft_dat=%3Celsevier_cross%3ES0167947320301973%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-3bd75883b3b384e7bd7831b4516aa6e26a4f913fd7418adfc17823d8dd1bd6f83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |