Loading…
Bayesian spatio-temporal models for stream networks
Spatio-temporal models are widely used in many research areas including ecology. The recent proliferation of the use of in-situ sensors in streams and rivers supports space-time water quality modelling and monitoring in near real-time. A new family of spatio-temporal models is introduced. These mode...
Saved in:
Published in: | Computational statistics & data analysis 2022-06, Vol.170, p.107446, Article 107446 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spatio-temporal models are widely used in many research areas including ecology. The recent proliferation of the use of in-situ sensors in streams and rivers supports space-time water quality modelling and monitoring in near real-time. A new family of spatio-temporal models is introduced. These models incorporate spatial dependence using stream distance while temporal autocorrelation is captured using vector autoregression approaches. Several variations of these novel models are proposed using a Bayesian framework. The results show that our proposed models perform well using spatio-temporal data collected from real stream networks, particularly in terms of out-of-sample RMSPE. This is illustrated considering a case study of water temperature data in the northwestern United States. |
---|---|
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2022.107446 |