Loading…

Hierarchical Bayesian spectral regression with shape constraints for multi-group data

We propose a hierarchical Bayesian (HB) model for multi-group analysis with group–specific, flexible regression functions. The lower–level (within group) and upper–level (between groups) regression functions have hierarchical Gaussian process priors. HB smoothing priors are developed for the spectra...

Full description

Saved in:
Bibliographic Details
Published in:Computational statistics & data analysis 2024-12, Vol.200, p.108036, Article 108036
Main Authors: Lenk, Peter, Lee, Jangwon, Han, Dongu, Park, Jichan, Choi, Taeryon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c181t-15c674e77d7ff3234d56ba0dc48cefc24f2a6ce9098ff0c8d7da53761635f26c3
container_end_page
container_issue
container_start_page 108036
container_title Computational statistics & data analysis
container_volume 200
creator Lenk, Peter
Lee, Jangwon
Han, Dongu
Park, Jichan
Choi, Taeryon
description We propose a hierarchical Bayesian (HB) model for multi-group analysis with group–specific, flexible regression functions. The lower–level (within group) and upper–level (between groups) regression functions have hierarchical Gaussian process priors. HB smoothing priors are developed for the spectral coefficients. The HB priors smooth the estimated functions within and between groups. The HB model is particularly useful when data within groups are sparse because it shares information across groups, and provides more accurate estimates than fitting separate nonparametric models to each group. The proposed model also allows shape constraints, such as monotone, U and S–shaped, and multi-modal constraints. When appropriate, shape constraints improve estimation by recognizing violations of the shape constraints as noise. The model is illustrated by two examples: monotone growth curves for children, and happiness as a convex, U-shaped function of age in multiple countries. Various basis functions could also be used, and the paper also implements versions with B-splines and orthogonal polynomials.
doi_str_mv 10.1016/j.csda.2024.108036
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_csda_2024_108036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947324001208</els_id><sourcerecordid>S0167947324001208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-15c674e77d7ff3234d56ba0dc48cefc24f2a6ce9098ff0c8d7da53761635f26c3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhH0AifLzApz8Ain-SexU4gIVUKRKXOjZMut166pNIm8K6tvjqpw5rTSjGe18jN1LMZVCmoftFCj4qRKqLkIrtLlgk2LYalZbfcWuibZCFNe2E7ZaJMw-wyaB3_Fnf0RKvuM0IIy5KBnXGYlS3_GfNG44bfyAHPqOip26kXjsM98fdmOq1rk_DDz40d-yy-h3hHd_94atXl8-54tq-fH2Pn9aViBbOVayAWNrtDbYGLXSdWjMlxcB6hYwgqqj8gZwJmZtjALaYINvtDXS6CYqA_qGqXMv5J4oY3RDTnufj04Kd4Lhtu4Ew51guDOMEno8h7B89l3mO4KEHWBIuax2oU__xX8B0ptsOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hierarchical Bayesian spectral regression with shape constraints for multi-group data</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>Lenk, Peter ; Lee, Jangwon ; Han, Dongu ; Park, Jichan ; Choi, Taeryon</creator><creatorcontrib>Lenk, Peter ; Lee, Jangwon ; Han, Dongu ; Park, Jichan ; Choi, Taeryon</creatorcontrib><description>We propose a hierarchical Bayesian (HB) model for multi-group analysis with group–specific, flexible regression functions. The lower–level (within group) and upper–level (between groups) regression functions have hierarchical Gaussian process priors. HB smoothing priors are developed for the spectral coefficients. The HB priors smooth the estimated functions within and between groups. The HB model is particularly useful when data within groups are sparse because it shares information across groups, and provides more accurate estimates than fitting separate nonparametric models to each group. The proposed model also allows shape constraints, such as monotone, U and S–shaped, and multi-modal constraints. When appropriate, shape constraints improve estimation by recognizing violations of the shape constraints as noise. The model is illustrated by two examples: monotone growth curves for children, and happiness as a convex, U-shaped function of age in multiple countries. Various basis functions could also be used, and the paper also implements versions with B-splines and orthogonal polynomials.</description><identifier>ISSN: 0167-9473</identifier><identifier>DOI: 10.1016/j.csda.2024.108036</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>B-splines ; Group-specific curves ; Hierarchical Bayes ; Orthogonal polynomials ; Pooling information ; Shape constraints ; Sparse data</subject><ispartof>Computational statistics &amp; data analysis, 2024-12, Vol.200, p.108036, Article 108036</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-15c674e77d7ff3234d56ba0dc48cefc24f2a6ce9098ff0c8d7da53761635f26c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947324001208$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3427,3438,3562,27923,27924,45971,45990,46002</link.rule.ids></links><search><creatorcontrib>Lenk, Peter</creatorcontrib><creatorcontrib>Lee, Jangwon</creatorcontrib><creatorcontrib>Han, Dongu</creatorcontrib><creatorcontrib>Park, Jichan</creatorcontrib><creatorcontrib>Choi, Taeryon</creatorcontrib><title>Hierarchical Bayesian spectral regression with shape constraints for multi-group data</title><title>Computational statistics &amp; data analysis</title><description>We propose a hierarchical Bayesian (HB) model for multi-group analysis with group–specific, flexible regression functions. The lower–level (within group) and upper–level (between groups) regression functions have hierarchical Gaussian process priors. HB smoothing priors are developed for the spectral coefficients. The HB priors smooth the estimated functions within and between groups. The HB model is particularly useful when data within groups are sparse because it shares information across groups, and provides more accurate estimates than fitting separate nonparametric models to each group. The proposed model also allows shape constraints, such as monotone, U and S–shaped, and multi-modal constraints. When appropriate, shape constraints improve estimation by recognizing violations of the shape constraints as noise. The model is illustrated by two examples: monotone growth curves for children, and happiness as a convex, U-shaped function of age in multiple countries. Various basis functions could also be used, and the paper also implements versions with B-splines and orthogonal polynomials.</description><subject>B-splines</subject><subject>Group-specific curves</subject><subject>Hierarchical Bayes</subject><subject>Orthogonal polynomials</subject><subject>Pooling information</subject><subject>Shape constraints</subject><subject>Sparse data</subject><issn>0167-9473</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhH0AifLzApz8Ain-SexU4gIVUKRKXOjZMut166pNIm8K6tvjqpw5rTSjGe18jN1LMZVCmoftFCj4qRKqLkIrtLlgk2LYalZbfcWuibZCFNe2E7ZaJMw-wyaB3_Fnf0RKvuM0IIy5KBnXGYlS3_GfNG44bfyAHPqOip26kXjsM98fdmOq1rk_DDz40d-yy-h3hHd_94atXl8-54tq-fH2Pn9aViBbOVayAWNrtDbYGLXSdWjMlxcB6hYwgqqj8gZwJmZtjALaYINvtDXS6CYqA_qGqXMv5J4oY3RDTnufj04Kd4Lhtu4Ew51guDOMEno8h7B89l3mO4KEHWBIuax2oU__xX8B0ptsOQ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Lenk, Peter</creator><creator>Lee, Jangwon</creator><creator>Han, Dongu</creator><creator>Park, Jichan</creator><creator>Choi, Taeryon</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202412</creationdate><title>Hierarchical Bayesian spectral regression with shape constraints for multi-group data</title><author>Lenk, Peter ; Lee, Jangwon ; Han, Dongu ; Park, Jichan ; Choi, Taeryon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-15c674e77d7ff3234d56ba0dc48cefc24f2a6ce9098ff0c8d7da53761635f26c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>B-splines</topic><topic>Group-specific curves</topic><topic>Hierarchical Bayes</topic><topic>Orthogonal polynomials</topic><topic>Pooling information</topic><topic>Shape constraints</topic><topic>Sparse data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenk, Peter</creatorcontrib><creatorcontrib>Lee, Jangwon</creatorcontrib><creatorcontrib>Han, Dongu</creatorcontrib><creatorcontrib>Park, Jichan</creatorcontrib><creatorcontrib>Choi, Taeryon</creatorcontrib><collection>CrossRef</collection><jtitle>Computational statistics &amp; data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenk, Peter</au><au>Lee, Jangwon</au><au>Han, Dongu</au><au>Park, Jichan</au><au>Choi, Taeryon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Bayesian spectral regression with shape constraints for multi-group data</atitle><jtitle>Computational statistics &amp; data analysis</jtitle><date>2024-12</date><risdate>2024</risdate><volume>200</volume><spage>108036</spage><pages>108036-</pages><artnum>108036</artnum><issn>0167-9473</issn><abstract>We propose a hierarchical Bayesian (HB) model for multi-group analysis with group–specific, flexible regression functions. The lower–level (within group) and upper–level (between groups) regression functions have hierarchical Gaussian process priors. HB smoothing priors are developed for the spectral coefficients. The HB priors smooth the estimated functions within and between groups. The HB model is particularly useful when data within groups are sparse because it shares information across groups, and provides more accurate estimates than fitting separate nonparametric models to each group. The proposed model also allows shape constraints, such as monotone, U and S–shaped, and multi-modal constraints. When appropriate, shape constraints improve estimation by recognizing violations of the shape constraints as noise. The model is illustrated by two examples: monotone growth curves for children, and happiness as a convex, U-shaped function of age in multiple countries. Various basis functions could also be used, and the paper also implements versions with B-splines and orthogonal polynomials.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2024.108036</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational statistics & data analysis, 2024-12, Vol.200, p.108036, Article 108036
issn 0167-9473
language eng
recordid cdi_crossref_primary_10_1016_j_csda_2024_108036
source ScienceDirect Freedom Collection; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]; Backfile Package - Decision Sciences [YDT]
subjects B-splines
Group-specific curves
Hierarchical Bayes
Orthogonal polynomials
Pooling information
Shape constraints
Sparse data
title Hierarchical Bayesian spectral regression with shape constraints for multi-group data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Bayesian%20spectral%20regression%20with%20shape%20constraints%20for%20multi-group%20data&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Lenk,%20Peter&rft.date=2024-12&rft.volume=200&rft.spage=108036&rft.pages=108036-&rft.artnum=108036&rft.issn=0167-9473&rft_id=info:doi/10.1016/j.csda.2024.108036&rft_dat=%3Celsevier_cross%3ES0167947324001208%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-15c674e77d7ff3234d56ba0dc48cefc24f2a6ce9098ff0c8d7da53761635f26c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true