Loading…
Hierarchical Bayesian spectral regression with shape constraints for multi-group data
We propose a hierarchical Bayesian (HB) model for multi-group analysis with group–specific, flexible regression functions. The lower–level (within group) and upper–level (between groups) regression functions have hierarchical Gaussian process priors. HB smoothing priors are developed for the spectra...
Saved in:
Published in: | Computational statistics & data analysis 2024-12, Vol.200, p.108036, Article 108036 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c181t-15c674e77d7ff3234d56ba0dc48cefc24f2a6ce9098ff0c8d7da53761635f26c3 |
container_end_page | |
container_issue | |
container_start_page | 108036 |
container_title | Computational statistics & data analysis |
container_volume | 200 |
creator | Lenk, Peter Lee, Jangwon Han, Dongu Park, Jichan Choi, Taeryon |
description | We propose a hierarchical Bayesian (HB) model for multi-group analysis with group–specific, flexible regression functions. The lower–level (within group) and upper–level (between groups) regression functions have hierarchical Gaussian process priors. HB smoothing priors are developed for the spectral coefficients. The HB priors smooth the estimated functions within and between groups. The HB model is particularly useful when data within groups are sparse because it shares information across groups, and provides more accurate estimates than fitting separate nonparametric models to each group. The proposed model also allows shape constraints, such as monotone, U and S–shaped, and multi-modal constraints. When appropriate, shape constraints improve estimation by recognizing violations of the shape constraints as noise. The model is illustrated by two examples: monotone growth curves for children, and happiness as a convex, U-shaped function of age in multiple countries. Various basis functions could also be used, and the paper also implements versions with B-splines and orthogonal polynomials. |
doi_str_mv | 10.1016/j.csda.2024.108036 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_csda_2024_108036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167947324001208</els_id><sourcerecordid>S0167947324001208</sourcerecordid><originalsourceid>FETCH-LOGICAL-c181t-15c674e77d7ff3234d56ba0dc48cefc24f2a6ce9098ff0c8d7da53761635f26c3</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhH0AifLzApz8Ain-SexU4gIVUKRKXOjZMut166pNIm8K6tvjqpw5rTSjGe18jN1LMZVCmoftFCj4qRKqLkIrtLlgk2LYalZbfcWuibZCFNe2E7ZaJMw-wyaB3_Fnf0RKvuM0IIy5KBnXGYlS3_GfNG44bfyAHPqOip26kXjsM98fdmOq1rk_DDz40d-yy-h3hHd_94atXl8-54tq-fH2Pn9aViBbOVayAWNrtDbYGLXSdWjMlxcB6hYwgqqj8gZwJmZtjALaYINvtDXS6CYqA_qGqXMv5J4oY3RDTnufj04Kd4Lhtu4Ew51guDOMEno8h7B89l3mO4KEHWBIuax2oU__xX8B0ptsOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hierarchical Bayesian spectral regression with shape constraints for multi-group data</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Computer Science (Legacy) [YCS]</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Backfile Package - Decision Sciences [YDT]</source><creator>Lenk, Peter ; Lee, Jangwon ; Han, Dongu ; Park, Jichan ; Choi, Taeryon</creator><creatorcontrib>Lenk, Peter ; Lee, Jangwon ; Han, Dongu ; Park, Jichan ; Choi, Taeryon</creatorcontrib><description>We propose a hierarchical Bayesian (HB) model for multi-group analysis with group–specific, flexible regression functions. The lower–level (within group) and upper–level (between groups) regression functions have hierarchical Gaussian process priors. HB smoothing priors are developed for the spectral coefficients. The HB priors smooth the estimated functions within and between groups. The HB model is particularly useful when data within groups are sparse because it shares information across groups, and provides more accurate estimates than fitting separate nonparametric models to each group. The proposed model also allows shape constraints, such as monotone, U and S–shaped, and multi-modal constraints. When appropriate, shape constraints improve estimation by recognizing violations of the shape constraints as noise. The model is illustrated by two examples: monotone growth curves for children, and happiness as a convex, U-shaped function of age in multiple countries. Various basis functions could also be used, and the paper also implements versions with B-splines and orthogonal polynomials.</description><identifier>ISSN: 0167-9473</identifier><identifier>DOI: 10.1016/j.csda.2024.108036</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>B-splines ; Group-specific curves ; Hierarchical Bayes ; Orthogonal polynomials ; Pooling information ; Shape constraints ; Sparse data</subject><ispartof>Computational statistics & data analysis, 2024-12, Vol.200, p.108036, Article 108036</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c181t-15c674e77d7ff3234d56ba0dc48cefc24f2a6ce9098ff0c8d7da53761635f26c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167947324001208$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3427,3438,3562,27923,27924,45971,45990,46002</link.rule.ids></links><search><creatorcontrib>Lenk, Peter</creatorcontrib><creatorcontrib>Lee, Jangwon</creatorcontrib><creatorcontrib>Han, Dongu</creatorcontrib><creatorcontrib>Park, Jichan</creatorcontrib><creatorcontrib>Choi, Taeryon</creatorcontrib><title>Hierarchical Bayesian spectral regression with shape constraints for multi-group data</title><title>Computational statistics & data analysis</title><description>We propose a hierarchical Bayesian (HB) model for multi-group analysis with group–specific, flexible regression functions. The lower–level (within group) and upper–level (between groups) regression functions have hierarchical Gaussian process priors. HB smoothing priors are developed for the spectral coefficients. The HB priors smooth the estimated functions within and between groups. The HB model is particularly useful when data within groups are sparse because it shares information across groups, and provides more accurate estimates than fitting separate nonparametric models to each group. The proposed model also allows shape constraints, such as monotone, U and S–shaped, and multi-modal constraints. When appropriate, shape constraints improve estimation by recognizing violations of the shape constraints as noise. The model is illustrated by two examples: monotone growth curves for children, and happiness as a convex, U-shaped function of age in multiple countries. Various basis functions could also be used, and the paper also implements versions with B-splines and orthogonal polynomials.</description><subject>B-splines</subject><subject>Group-specific curves</subject><subject>Hierarchical Bayes</subject><subject>Orthogonal polynomials</subject><subject>Pooling information</subject><subject>Shape constraints</subject><subject>Sparse data</subject><issn>0167-9473</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhH0AifLzApz8Ain-SexU4gIVUKRKXOjZMut166pNIm8K6tvjqpw5rTSjGe18jN1LMZVCmoftFCj4qRKqLkIrtLlgk2LYalZbfcWuibZCFNe2E7ZaJMw-wyaB3_Fnf0RKvuM0IIy5KBnXGYlS3_GfNG44bfyAHPqOip26kXjsM98fdmOq1rk_DDz40d-yy-h3hHd_94atXl8-54tq-fH2Pn9aViBbOVayAWNrtDbYGLXSdWjMlxcB6hYwgqqj8gZwJmZtjALaYINvtDXS6CYqA_qGqXMv5J4oY3RDTnufj04Kd4Lhtu4Ew51guDOMEno8h7B89l3mO4KEHWBIuax2oU__xX8B0ptsOQ</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Lenk, Peter</creator><creator>Lee, Jangwon</creator><creator>Han, Dongu</creator><creator>Park, Jichan</creator><creator>Choi, Taeryon</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202412</creationdate><title>Hierarchical Bayesian spectral regression with shape constraints for multi-group data</title><author>Lenk, Peter ; Lee, Jangwon ; Han, Dongu ; Park, Jichan ; Choi, Taeryon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c181t-15c674e77d7ff3234d56ba0dc48cefc24f2a6ce9098ff0c8d7da53761635f26c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>B-splines</topic><topic>Group-specific curves</topic><topic>Hierarchical Bayes</topic><topic>Orthogonal polynomials</topic><topic>Pooling information</topic><topic>Shape constraints</topic><topic>Sparse data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenk, Peter</creatorcontrib><creatorcontrib>Lee, Jangwon</creatorcontrib><creatorcontrib>Han, Dongu</creatorcontrib><creatorcontrib>Park, Jichan</creatorcontrib><creatorcontrib>Choi, Taeryon</creatorcontrib><collection>CrossRef</collection><jtitle>Computational statistics & data analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenk, Peter</au><au>Lee, Jangwon</au><au>Han, Dongu</au><au>Park, Jichan</au><au>Choi, Taeryon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical Bayesian spectral regression with shape constraints for multi-group data</atitle><jtitle>Computational statistics & data analysis</jtitle><date>2024-12</date><risdate>2024</risdate><volume>200</volume><spage>108036</spage><pages>108036-</pages><artnum>108036</artnum><issn>0167-9473</issn><abstract>We propose a hierarchical Bayesian (HB) model for multi-group analysis with group–specific, flexible regression functions. The lower–level (within group) and upper–level (between groups) regression functions have hierarchical Gaussian process priors. HB smoothing priors are developed for the spectral coefficients. The HB priors smooth the estimated functions within and between groups. The HB model is particularly useful when data within groups are sparse because it shares information across groups, and provides more accurate estimates than fitting separate nonparametric models to each group. The proposed model also allows shape constraints, such as monotone, U and S–shaped, and multi-modal constraints. When appropriate, shape constraints improve estimation by recognizing violations of the shape constraints as noise. The model is illustrated by two examples: monotone growth curves for children, and happiness as a convex, U-shaped function of age in multiple countries. Various basis functions could also be used, and the paper also implements versions with B-splines and orthogonal polynomials.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.csda.2024.108036</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-9473 |
ispartof | Computational statistics & data analysis, 2024-12, Vol.200, p.108036, Article 108036 |
issn | 0167-9473 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_csda_2024_108036 |
source | ScienceDirect Freedom Collection; Backfile Package - Computer Science (Legacy) [YCS]; Backfile Package - Mathematics (Legacy) [YMT]; Backfile Package - Decision Sciences [YDT] |
subjects | B-splines Group-specific curves Hierarchical Bayes Orthogonal polynomials Pooling information Shape constraints Sparse data |
title | Hierarchical Bayesian spectral regression with shape constraints for multi-group data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A27%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20Bayesian%20spectral%20regression%20with%20shape%20constraints%20for%20multi-group%20data&rft.jtitle=Computational%20statistics%20&%20data%20analysis&rft.au=Lenk,%20Peter&rft.date=2024-12&rft.volume=200&rft.spage=108036&rft.pages=108036-&rft.artnum=108036&rft.issn=0167-9473&rft_id=info:doi/10.1016/j.csda.2024.108036&rft_dat=%3Celsevier_cross%3ES0167947324001208%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c181t-15c674e77d7ff3234d56ba0dc48cefc24f2a6ce9098ff0c8d7da53761635f26c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |