Loading…

Recurrent context-aware multi-stage network for single image deraining

Single image rain streak removal is extremely necessary since rainy images can seriously affect many computer vision systems. In this paper, we propose a novel recurrent context-aware multi-stage network (ReCMN) for image rain removal that gradually predicts clean derained results. Specifically, the...

Full description

Saved in:
Bibliographic Details
Published in:Computer vision and image understanding 2023-01, Vol.227, p.103612, Article 103612
Main Authors: Liu, Yuetong, Zhang, Rui, Zhang, Yunfeng, Pan, Xiao, Yao, Xunxiang, Ni, Zhaorui, Han, Huijian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813
cites cdi_FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813
container_end_page
container_issue
container_start_page 103612
container_title Computer vision and image understanding
container_volume 227
creator Liu, Yuetong
Zhang, Rui
Zhang, Yunfeng
Pan, Xiao
Yao, Xunxiang
Ni, Zhaorui
Han, Huijian
description Single image rain streak removal is extremely necessary since rainy images can seriously affect many computer vision systems. In this paper, we propose a novel recurrent context-aware multi-stage network (ReCMN) for image rain removal that gradually predicts clean derained results. Specifically, the ReCMN introduces a multi-stage strategy to perform contextual relationship modeling. Firstly, we use the densely residual extraction block (DREB) to guide feature extraction. Then, a multi-scale context aggregation block (MCAB) is designed to utilize the long-distance dependencies and multiple scale features, which can fuse features of different levels to fully exploit contextual information. Finally, we develop a parallel attention block (PAB) to capture the channel and spatial information and only pass effective feature representation. Experimental results demonstrate that our method outperforms several state-of-the-art methods, based on both synthetic datasets and real-world rainy images. •Propose ReCMN, a recurrent multi-stage deraining network to generate clean images.•Introduce MCAB to fuse features and capture contextual information.•Apply PAB to obtain informative features from the channel and spatial dimensions.•Show state-of-the-art performance on both real-world and synthetic datasets.
doi_str_mv 10.1016/j.cviu.2022.103612
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cviu_2022_103612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314222001904</els_id><sourcerecordid>S1077314222001904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813</originalsourceid><addsrcrecordid>eNp9kN1KxDAQhYMouK6-gFd9gaz5aZsWvJHFdYUFQRS8C-l0sqR2W0nSXX17W-q1VzOc4QznfITccrbijOd3zQqOblgJJsQoyJyLM7LgrGRUyOzjfNqVopKn4pJchdAwxnla8gXZvCIM3mMXE-i7iN-RmpPxmByGNjoaotlj0mE89f4zsb1Pguv2LSbuMB1q9MZ1o3JNLqxpA978zSV53zy-rbd09_L0vH7YUZCMRarQYlUqaW2dplXBVAkcbJmjya0tECAXRkqV15JllRrbIFQZFkopm2FdcLkkYv4Lvg_Bo9VffozifzRneiKhGz2R0BMJPZMYTfezCcdkR4deB3DYAdbOI0Rd9-4_-y-DRmju</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recurrent context-aware multi-stage network for single image deraining</title><source>Elsevier</source><creator>Liu, Yuetong ; Zhang, Rui ; Zhang, Yunfeng ; Pan, Xiao ; Yao, Xunxiang ; Ni, Zhaorui ; Han, Huijian</creator><creatorcontrib>Liu, Yuetong ; Zhang, Rui ; Zhang, Yunfeng ; Pan, Xiao ; Yao, Xunxiang ; Ni, Zhaorui ; Han, Huijian</creatorcontrib><description>Single image rain streak removal is extremely necessary since rainy images can seriously affect many computer vision systems. In this paper, we propose a novel recurrent context-aware multi-stage network (ReCMN) for image rain removal that gradually predicts clean derained results. Specifically, the ReCMN introduces a multi-stage strategy to perform contextual relationship modeling. Firstly, we use the densely residual extraction block (DREB) to guide feature extraction. Then, a multi-scale context aggregation block (MCAB) is designed to utilize the long-distance dependencies and multiple scale features, which can fuse features of different levels to fully exploit contextual information. Finally, we develop a parallel attention block (PAB) to capture the channel and spatial information and only pass effective feature representation. Experimental results demonstrate that our method outperforms several state-of-the-art methods, based on both synthetic datasets and real-world rainy images. •Propose ReCMN, a recurrent multi-stage deraining network to generate clean images.•Introduce MCAB to fuse features and capture contextual information.•Apply PAB to obtain informative features from the channel and spatial dimensions.•Show state-of-the-art performance on both real-world and synthetic datasets.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2022.103612</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Contextual information ; Multi-stage strategy ; Recurrent network ; Single image deraining</subject><ispartof>Computer vision and image understanding, 2023-01, Vol.227, p.103612, Article 103612</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813</citedby><cites>FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Liu, Yuetong</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhang, Yunfeng</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Yao, Xunxiang</creatorcontrib><creatorcontrib>Ni, Zhaorui</creatorcontrib><creatorcontrib>Han, Huijian</creatorcontrib><title>Recurrent context-aware multi-stage network for single image deraining</title><title>Computer vision and image understanding</title><description>Single image rain streak removal is extremely necessary since rainy images can seriously affect many computer vision systems. In this paper, we propose a novel recurrent context-aware multi-stage network (ReCMN) for image rain removal that gradually predicts clean derained results. Specifically, the ReCMN introduces a multi-stage strategy to perform contextual relationship modeling. Firstly, we use the densely residual extraction block (DREB) to guide feature extraction. Then, a multi-scale context aggregation block (MCAB) is designed to utilize the long-distance dependencies and multiple scale features, which can fuse features of different levels to fully exploit contextual information. Finally, we develop a parallel attention block (PAB) to capture the channel and spatial information and only pass effective feature representation. Experimental results demonstrate that our method outperforms several state-of-the-art methods, based on both synthetic datasets and real-world rainy images. •Propose ReCMN, a recurrent multi-stage deraining network to generate clean images.•Introduce MCAB to fuse features and capture contextual information.•Apply PAB to obtain informative features from the channel and spatial dimensions.•Show state-of-the-art performance on both real-world and synthetic datasets.</description><subject>Contextual information</subject><subject>Multi-stage strategy</subject><subject>Recurrent network</subject><subject>Single image deraining</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KxDAQhYMouK6-gFd9gaz5aZsWvJHFdYUFQRS8C-l0sqR2W0nSXX17W-q1VzOc4QznfITccrbijOd3zQqOblgJJsQoyJyLM7LgrGRUyOzjfNqVopKn4pJchdAwxnla8gXZvCIM3mMXE-i7iN-RmpPxmByGNjoaotlj0mE89f4zsb1Pguv2LSbuMB1q9MZ1o3JNLqxpA978zSV53zy-rbd09_L0vH7YUZCMRarQYlUqaW2dplXBVAkcbJmjya0tECAXRkqV15JllRrbIFQZFkopm2FdcLkkYv4Lvg_Bo9VffozifzRneiKhGz2R0BMJPZMYTfezCcdkR4deB3DYAdbOI0Rd9-4_-y-DRmju</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Liu, Yuetong</creator><creator>Zhang, Rui</creator><creator>Zhang, Yunfeng</creator><creator>Pan, Xiao</creator><creator>Yao, Xunxiang</creator><creator>Ni, Zhaorui</creator><creator>Han, Huijian</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202301</creationdate><title>Recurrent context-aware multi-stage network for single image deraining</title><author>Liu, Yuetong ; Zhang, Rui ; Zhang, Yunfeng ; Pan, Xiao ; Yao, Xunxiang ; Ni, Zhaorui ; Han, Huijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Contextual information</topic><topic>Multi-stage strategy</topic><topic>Recurrent network</topic><topic>Single image deraining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuetong</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhang, Yunfeng</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Yao, Xunxiang</creatorcontrib><creatorcontrib>Ni, Zhaorui</creatorcontrib><creatorcontrib>Han, Huijian</creatorcontrib><collection>CrossRef</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuetong</au><au>Zhang, Rui</au><au>Zhang, Yunfeng</au><au>Pan, Xiao</au><au>Yao, Xunxiang</au><au>Ni, Zhaorui</au><au>Han, Huijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent context-aware multi-stage network for single image deraining</atitle><jtitle>Computer vision and image understanding</jtitle><date>2023-01</date><risdate>2023</risdate><volume>227</volume><spage>103612</spage><pages>103612-</pages><artnum>103612</artnum><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>Single image rain streak removal is extremely necessary since rainy images can seriously affect many computer vision systems. In this paper, we propose a novel recurrent context-aware multi-stage network (ReCMN) for image rain removal that gradually predicts clean derained results. Specifically, the ReCMN introduces a multi-stage strategy to perform contextual relationship modeling. Firstly, we use the densely residual extraction block (DREB) to guide feature extraction. Then, a multi-scale context aggregation block (MCAB) is designed to utilize the long-distance dependencies and multiple scale features, which can fuse features of different levels to fully exploit contextual information. Finally, we develop a parallel attention block (PAB) to capture the channel and spatial information and only pass effective feature representation. Experimental results demonstrate that our method outperforms several state-of-the-art methods, based on both synthetic datasets and real-world rainy images. •Propose ReCMN, a recurrent multi-stage deraining network to generate clean images.•Introduce MCAB to fuse features and capture contextual information.•Apply PAB to obtain informative features from the channel and spatial dimensions.•Show state-of-the-art performance on both real-world and synthetic datasets.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2022.103612</doi></addata></record>
fulltext fulltext
identifier ISSN: 1077-3142
ispartof Computer vision and image understanding, 2023-01, Vol.227, p.103612, Article 103612
issn 1077-3142
1090-235X
language eng
recordid cdi_crossref_primary_10_1016_j_cviu_2022_103612
source Elsevier
subjects Contextual information
Multi-stage strategy
Recurrent network
Single image deraining
title Recurrent context-aware multi-stage network for single image deraining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20context-aware%20multi-stage%20network%20for%20single%20image%20deraining&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Liu,%20Yuetong&rft.date=2023-01&rft.volume=227&rft.spage=103612&rft.pages=103612-&rft.artnum=103612&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016/j.cviu.2022.103612&rft_dat=%3Celsevier_cross%3ES1077314222001904%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true