Loading…
Recurrent context-aware multi-stage network for single image deraining
Single image rain streak removal is extremely necessary since rainy images can seriously affect many computer vision systems. In this paper, we propose a novel recurrent context-aware multi-stage network (ReCMN) for image rain removal that gradually predicts clean derained results. Specifically, the...
Saved in:
Published in: | Computer vision and image understanding 2023-01, Vol.227, p.103612, Article 103612 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813 |
container_end_page | |
container_issue | |
container_start_page | 103612 |
container_title | Computer vision and image understanding |
container_volume | 227 |
creator | Liu, Yuetong Zhang, Rui Zhang, Yunfeng Pan, Xiao Yao, Xunxiang Ni, Zhaorui Han, Huijian |
description | Single image rain streak removal is extremely necessary since rainy images can seriously affect many computer vision systems. In this paper, we propose a novel recurrent context-aware multi-stage network (ReCMN) for image rain removal that gradually predicts clean derained results. Specifically, the ReCMN introduces a multi-stage strategy to perform contextual relationship modeling. Firstly, we use the densely residual extraction block (DREB) to guide feature extraction. Then, a multi-scale context aggregation block (MCAB) is designed to utilize the long-distance dependencies and multiple scale features, which can fuse features of different levels to fully exploit contextual information. Finally, we develop a parallel attention block (PAB) to capture the channel and spatial information and only pass effective feature representation. Experimental results demonstrate that our method outperforms several state-of-the-art methods, based on both synthetic datasets and real-world rainy images.
•Propose ReCMN, a recurrent multi-stage deraining network to generate clean images.•Introduce MCAB to fuse features and capture contextual information.•Apply PAB to obtain informative features from the channel and spatial dimensions.•Show state-of-the-art performance on both real-world and synthetic datasets. |
doi_str_mv | 10.1016/j.cviu.2022.103612 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_cviu_2022_103612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1077314222001904</els_id><sourcerecordid>S1077314222001904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813</originalsourceid><addsrcrecordid>eNp9kN1KxDAQhYMouK6-gFd9gaz5aZsWvJHFdYUFQRS8C-l0sqR2W0nSXX17W-q1VzOc4QznfITccrbijOd3zQqOblgJJsQoyJyLM7LgrGRUyOzjfNqVopKn4pJchdAwxnla8gXZvCIM3mMXE-i7iN-RmpPxmByGNjoaotlj0mE89f4zsb1Pguv2LSbuMB1q9MZ1o3JNLqxpA978zSV53zy-rbd09_L0vH7YUZCMRarQYlUqaW2dplXBVAkcbJmjya0tECAXRkqV15JllRrbIFQZFkopm2FdcLkkYv4Lvg_Bo9VffozifzRneiKhGz2R0BMJPZMYTfezCcdkR4deB3DYAdbOI0Rd9-4_-y-DRmju</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Recurrent context-aware multi-stage network for single image deraining</title><source>Elsevier</source><creator>Liu, Yuetong ; Zhang, Rui ; Zhang, Yunfeng ; Pan, Xiao ; Yao, Xunxiang ; Ni, Zhaorui ; Han, Huijian</creator><creatorcontrib>Liu, Yuetong ; Zhang, Rui ; Zhang, Yunfeng ; Pan, Xiao ; Yao, Xunxiang ; Ni, Zhaorui ; Han, Huijian</creatorcontrib><description>Single image rain streak removal is extremely necessary since rainy images can seriously affect many computer vision systems. In this paper, we propose a novel recurrent context-aware multi-stage network (ReCMN) for image rain removal that gradually predicts clean derained results. Specifically, the ReCMN introduces a multi-stage strategy to perform contextual relationship modeling. Firstly, we use the densely residual extraction block (DREB) to guide feature extraction. Then, a multi-scale context aggregation block (MCAB) is designed to utilize the long-distance dependencies and multiple scale features, which can fuse features of different levels to fully exploit contextual information. Finally, we develop a parallel attention block (PAB) to capture the channel and spatial information and only pass effective feature representation. Experimental results demonstrate that our method outperforms several state-of-the-art methods, based on both synthetic datasets and real-world rainy images.
•Propose ReCMN, a recurrent multi-stage deraining network to generate clean images.•Introduce MCAB to fuse features and capture contextual information.•Apply PAB to obtain informative features from the channel and spatial dimensions.•Show state-of-the-art performance on both real-world and synthetic datasets.</description><identifier>ISSN: 1077-3142</identifier><identifier>EISSN: 1090-235X</identifier><identifier>DOI: 10.1016/j.cviu.2022.103612</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Contextual information ; Multi-stage strategy ; Recurrent network ; Single image deraining</subject><ispartof>Computer vision and image understanding, 2023-01, Vol.227, p.103612, Article 103612</ispartof><rights>2022 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813</citedby><cites>FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Liu, Yuetong</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhang, Yunfeng</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Yao, Xunxiang</creatorcontrib><creatorcontrib>Ni, Zhaorui</creatorcontrib><creatorcontrib>Han, Huijian</creatorcontrib><title>Recurrent context-aware multi-stage network for single image deraining</title><title>Computer vision and image understanding</title><description>Single image rain streak removal is extremely necessary since rainy images can seriously affect many computer vision systems. In this paper, we propose a novel recurrent context-aware multi-stage network (ReCMN) for image rain removal that gradually predicts clean derained results. Specifically, the ReCMN introduces a multi-stage strategy to perform contextual relationship modeling. Firstly, we use the densely residual extraction block (DREB) to guide feature extraction. Then, a multi-scale context aggregation block (MCAB) is designed to utilize the long-distance dependencies and multiple scale features, which can fuse features of different levels to fully exploit contextual information. Finally, we develop a parallel attention block (PAB) to capture the channel and spatial information and only pass effective feature representation. Experimental results demonstrate that our method outperforms several state-of-the-art methods, based on both synthetic datasets and real-world rainy images.
•Propose ReCMN, a recurrent multi-stage deraining network to generate clean images.•Introduce MCAB to fuse features and capture contextual information.•Apply PAB to obtain informative features from the channel and spatial dimensions.•Show state-of-the-art performance on both real-world and synthetic datasets.</description><subject>Contextual information</subject><subject>Multi-stage strategy</subject><subject>Recurrent network</subject><subject>Single image deraining</subject><issn>1077-3142</issn><issn>1090-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KxDAQhYMouK6-gFd9gaz5aZsWvJHFdYUFQRS8C-l0sqR2W0nSXX17W-q1VzOc4QznfITccrbijOd3zQqOblgJJsQoyJyLM7LgrGRUyOzjfNqVopKn4pJchdAwxnla8gXZvCIM3mMXE-i7iN-RmpPxmByGNjoaotlj0mE89f4zsb1Pguv2LSbuMB1q9MZ1o3JNLqxpA978zSV53zy-rbd09_L0vH7YUZCMRarQYlUqaW2dplXBVAkcbJmjya0tECAXRkqV15JllRrbIFQZFkopm2FdcLkkYv4Lvg_Bo9VffozifzRneiKhGz2R0BMJPZMYTfezCcdkR4deB3DYAdbOI0Rd9-4_-y-DRmju</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Liu, Yuetong</creator><creator>Zhang, Rui</creator><creator>Zhang, Yunfeng</creator><creator>Pan, Xiao</creator><creator>Yao, Xunxiang</creator><creator>Ni, Zhaorui</creator><creator>Han, Huijian</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202301</creationdate><title>Recurrent context-aware multi-stage network for single image deraining</title><author>Liu, Yuetong ; Zhang, Rui ; Zhang, Yunfeng ; Pan, Xiao ; Yao, Xunxiang ; Ni, Zhaorui ; Han, Huijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Contextual information</topic><topic>Multi-stage strategy</topic><topic>Recurrent network</topic><topic>Single image deraining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yuetong</creatorcontrib><creatorcontrib>Zhang, Rui</creatorcontrib><creatorcontrib>Zhang, Yunfeng</creatorcontrib><creatorcontrib>Pan, Xiao</creatorcontrib><creatorcontrib>Yao, Xunxiang</creatorcontrib><creatorcontrib>Ni, Zhaorui</creatorcontrib><creatorcontrib>Han, Huijian</creatorcontrib><collection>CrossRef</collection><jtitle>Computer vision and image understanding</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yuetong</au><au>Zhang, Rui</au><au>Zhang, Yunfeng</au><au>Pan, Xiao</au><au>Yao, Xunxiang</au><au>Ni, Zhaorui</au><au>Han, Huijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recurrent context-aware multi-stage network for single image deraining</atitle><jtitle>Computer vision and image understanding</jtitle><date>2023-01</date><risdate>2023</risdate><volume>227</volume><spage>103612</spage><pages>103612-</pages><artnum>103612</artnum><issn>1077-3142</issn><eissn>1090-235X</eissn><abstract>Single image rain streak removal is extremely necessary since rainy images can seriously affect many computer vision systems. In this paper, we propose a novel recurrent context-aware multi-stage network (ReCMN) for image rain removal that gradually predicts clean derained results. Specifically, the ReCMN introduces a multi-stage strategy to perform contextual relationship modeling. Firstly, we use the densely residual extraction block (DREB) to guide feature extraction. Then, a multi-scale context aggregation block (MCAB) is designed to utilize the long-distance dependencies and multiple scale features, which can fuse features of different levels to fully exploit contextual information. Finally, we develop a parallel attention block (PAB) to capture the channel and spatial information and only pass effective feature representation. Experimental results demonstrate that our method outperforms several state-of-the-art methods, based on both synthetic datasets and real-world rainy images.
•Propose ReCMN, a recurrent multi-stage deraining network to generate clean images.•Introduce MCAB to fuse features and capture contextual information.•Apply PAB to obtain informative features from the channel and spatial dimensions.•Show state-of-the-art performance on both real-world and synthetic datasets.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.cviu.2022.103612</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1077-3142 |
ispartof | Computer vision and image understanding, 2023-01, Vol.227, p.103612, Article 103612 |
issn | 1077-3142 1090-235X |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_cviu_2022_103612 |
source | Elsevier |
subjects | Contextual information Multi-stage strategy Recurrent network Single image deraining |
title | Recurrent context-aware multi-stage network for single image deraining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recurrent%20context-aware%20multi-stage%20network%20for%20single%20image%20deraining&rft.jtitle=Computer%20vision%20and%20image%20understanding&rft.au=Liu,%20Yuetong&rft.date=2023-01&rft.volume=227&rft.spage=103612&rft.pages=103612-&rft.artnum=103612&rft.issn=1077-3142&rft.eissn=1090-235X&rft_id=info:doi/10.1016/j.cviu.2022.103612&rft_dat=%3Celsevier_cross%3ES1077314222001904%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-7efeb973ffd44b8079c1cf96ea6ff8ecc62a3376d305b7202ecb5e8777f5ed813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |