Loading…

Modified cosmology from quantum deformed entropy

Jalalzadeh (2022), established that the thermodynamical entropy of a quantum-deformed black hole with horizon area A can be written as Sq=πsinA8GN/sinπ2N, where N=Lq2/LP2, LP being the Planck length and Lq denoting, generically, the q-deformed cosmic event horizon distance Lq. Motivated by this, we...

Full description

Saved in:
Bibliographic Details
Published in:PHYSICS OF THE DARK UNIVERSE 2023-12, Vol.42, p.101320, Article 101320
Main Authors: Jalalzadeh, S., Moradpour, H., Moniz, P.V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-59336d0af669722244e18517e0f7c687c64e271c80d4c26ffd6b0918e63417223
cites cdi_FETCH-LOGICAL-c300t-59336d0af669722244e18517e0f7c687c64e271c80d4c26ffd6b0918e63417223
container_end_page
container_issue
container_start_page 101320
container_title PHYSICS OF THE DARK UNIVERSE
container_volume 42
creator Jalalzadeh, S.
Moradpour, H.
Moniz, P.V.
description Jalalzadeh (2022), established that the thermodynamical entropy of a quantum-deformed black hole with horizon area A can be written as Sq=πsinA8GN/sinπ2N, where N=Lq2/LP2, LP being the Planck length and Lq denoting, generically, the q-deformed cosmic event horizon distance Lq. Motivated by this, we now extend the framework constructed in Jalalzadeh (2022) towards the Friedmann and Raychaudhuri equations describing spatially homogeneous and isotropic universe dynamics. Our procedure in this paper involves a twofold assumption. On the one hand, we take the entropy associated with the apparent horizon of the Robertson–Walker universe in the form of the aforementioned expression. On the other hand, we assume that the unified first law of thermodynamics, dE=TdS+WdV, holds on the apparent horizon. Subsequently, we find a novel modified cosmological scenario characterized by quantum-deformed (q-deformed) Friedmann and Raychaudhuri equations containing additional components that generate an effective dark energy sector. Our results indicate an effective dark energy component, which can explain the Universe’s late-time acceleration. Moreover, the Universe follows the standard thermal history, with a transition redshift from deceleration to acceleration at ztran=0.5. More precisely, according to our model, at a redshift of z=0.377, the effective dark energy dominates with a de Sitter universe in the long run. We include the evolution of luminosity distance, μ, the Hubble parameter, H(z), and the deceleration parameter, q(z), versus redshift. Finally, we have conducted a comparative analysis of our proposed model with others involving non-extensive entropies.
doi_str_mv 10.1016/j.dark.2023.101320
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_dark_2023_101320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2212686423001541</els_id><sourcerecordid>S2212686423001541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-59336d0af669722244e18517e0f7c687c64e271c80d4c26ffd6b0918e63417223</originalsourceid><addsrcrecordid>eNp9j89KxDAQh4MouKz7Ap76Aq2TSZu24EUW_yyseNFzqMlEUrfNmnSFvr0t9eDJwzDDb_iG-Ri75pBx4PKmzUwTPjMEFHMgEM7YCpFjKiuZn_-ZL9kmxhYAsC4QqmLF4NkbZx2ZRPvY-YP_GBMbfJd8nZp-OHWJIetDN-2pH4I_jlfswjaHSJvfvmZvD_ev26d0__K4297tUy0AhrSohZAGGitlXSJinhOvCl4S2FLLaqqcsOS6ApNrlNYa-Q41r0iKnE-AWDNc7urgYwxk1TG4rgmj4qBmbdWqWVvN2mrRnqDbBaLps29HQUXtqNdkXCA9KOPdf_gPlkBe1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modified cosmology from quantum deformed entropy</title><source>ScienceDirect Freedom Collection</source><creator>Jalalzadeh, S. ; Moradpour, H. ; Moniz, P.V.</creator><creatorcontrib>Jalalzadeh, S. ; Moradpour, H. ; Moniz, P.V.</creatorcontrib><description>Jalalzadeh (2022), established that the thermodynamical entropy of a quantum-deformed black hole with horizon area A can be written as Sq=πsinA8GN/sinπ2N, where N=Lq2/LP2, LP being the Planck length and Lq denoting, generically, the q-deformed cosmic event horizon distance Lq. Motivated by this, we now extend the framework constructed in Jalalzadeh (2022) towards the Friedmann and Raychaudhuri equations describing spatially homogeneous and isotropic universe dynamics. Our procedure in this paper involves a twofold assumption. On the one hand, we take the entropy associated with the apparent horizon of the Robertson–Walker universe in the form of the aforementioned expression. On the other hand, we assume that the unified first law of thermodynamics, dE=TdS+WdV, holds on the apparent horizon. Subsequently, we find a novel modified cosmological scenario characterized by quantum-deformed (q-deformed) Friedmann and Raychaudhuri equations containing additional components that generate an effective dark energy sector. Our results indicate an effective dark energy component, which can explain the Universe’s late-time acceleration. Moreover, the Universe follows the standard thermal history, with a transition redshift from deceleration to acceleration at ztran=0.5. More precisely, according to our model, at a redshift of z=0.377, the effective dark energy dominates with a de Sitter universe in the long run. We include the evolution of luminosity distance, μ, the Hubble parameter, H(z), and the deceleration parameter, q(z), versus redshift. Finally, we have conducted a comparative analysis of our proposed model with others involving non-extensive entropies.</description><identifier>ISSN: 2212-6864</identifier><identifier>EISSN: 2212-6864</identifier><identifier>DOI: 10.1016/j.dark.2023.101320</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Entropy ; Holographic dark energy ; Modified cosmology ; q-deformation</subject><ispartof>PHYSICS OF THE DARK UNIVERSE, 2023-12, Vol.42, p.101320, Article 101320</ispartof><rights>2023 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-59336d0af669722244e18517e0f7c687c64e271c80d4c26ffd6b0918e63417223</citedby><cites>FETCH-LOGICAL-c300t-59336d0af669722244e18517e0f7c687c64e271c80d4c26ffd6b0918e63417223</cites><orcidid>0000-0001-7170-8952 ; 0000-0003-4854-2960 ; 0000-0003-0941-8422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jalalzadeh, S.</creatorcontrib><creatorcontrib>Moradpour, H.</creatorcontrib><creatorcontrib>Moniz, P.V.</creatorcontrib><title>Modified cosmology from quantum deformed entropy</title><title>PHYSICS OF THE DARK UNIVERSE</title><description>Jalalzadeh (2022), established that the thermodynamical entropy of a quantum-deformed black hole with horizon area A can be written as Sq=πsinA8GN/sinπ2N, where N=Lq2/LP2, LP being the Planck length and Lq denoting, generically, the q-deformed cosmic event horizon distance Lq. Motivated by this, we now extend the framework constructed in Jalalzadeh (2022) towards the Friedmann and Raychaudhuri equations describing spatially homogeneous and isotropic universe dynamics. Our procedure in this paper involves a twofold assumption. On the one hand, we take the entropy associated with the apparent horizon of the Robertson–Walker universe in the form of the aforementioned expression. On the other hand, we assume that the unified first law of thermodynamics, dE=TdS+WdV, holds on the apparent horizon. Subsequently, we find a novel modified cosmological scenario characterized by quantum-deformed (q-deformed) Friedmann and Raychaudhuri equations containing additional components that generate an effective dark energy sector. Our results indicate an effective dark energy component, which can explain the Universe’s late-time acceleration. Moreover, the Universe follows the standard thermal history, with a transition redshift from deceleration to acceleration at ztran=0.5. More precisely, according to our model, at a redshift of z=0.377, the effective dark energy dominates with a de Sitter universe in the long run. We include the evolution of luminosity distance, μ, the Hubble parameter, H(z), and the deceleration parameter, q(z), versus redshift. Finally, we have conducted a comparative analysis of our proposed model with others involving non-extensive entropies.</description><subject>Entropy</subject><subject>Holographic dark energy</subject><subject>Modified cosmology</subject><subject>q-deformation</subject><issn>2212-6864</issn><issn>2212-6864</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9j89KxDAQh4MouKz7Ap76Aq2TSZu24EUW_yyseNFzqMlEUrfNmnSFvr0t9eDJwzDDb_iG-Ri75pBx4PKmzUwTPjMEFHMgEM7YCpFjKiuZn_-ZL9kmxhYAsC4QqmLF4NkbZx2ZRPvY-YP_GBMbfJd8nZp-OHWJIetDN-2pH4I_jlfswjaHSJvfvmZvD_ev26d0__K4297tUy0AhrSohZAGGitlXSJinhOvCl4S2FLLaqqcsOS6ApNrlNYa-Q41r0iKnE-AWDNc7urgYwxk1TG4rgmj4qBmbdWqWVvN2mrRnqDbBaLps29HQUXtqNdkXCA9KOPdf_gPlkBe1w</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Jalalzadeh, S.</creator><creator>Moradpour, H.</creator><creator>Moniz, P.V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7170-8952</orcidid><orcidid>https://orcid.org/0000-0003-4854-2960</orcidid><orcidid>https://orcid.org/0000-0003-0941-8422</orcidid></search><sort><creationdate>202312</creationdate><title>Modified cosmology from quantum deformed entropy</title><author>Jalalzadeh, S. ; Moradpour, H. ; Moniz, P.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-59336d0af669722244e18517e0f7c687c64e271c80d4c26ffd6b0918e63417223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Entropy</topic><topic>Holographic dark energy</topic><topic>Modified cosmology</topic><topic>q-deformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jalalzadeh, S.</creatorcontrib><creatorcontrib>Moradpour, H.</creatorcontrib><creatorcontrib>Moniz, P.V.</creatorcontrib><collection>CrossRef</collection><jtitle>PHYSICS OF THE DARK UNIVERSE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jalalzadeh, S.</au><au>Moradpour, H.</au><au>Moniz, P.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modified cosmology from quantum deformed entropy</atitle><jtitle>PHYSICS OF THE DARK UNIVERSE</jtitle><date>2023-12</date><risdate>2023</risdate><volume>42</volume><spage>101320</spage><pages>101320-</pages><artnum>101320</artnum><issn>2212-6864</issn><eissn>2212-6864</eissn><abstract>Jalalzadeh (2022), established that the thermodynamical entropy of a quantum-deformed black hole with horizon area A can be written as Sq=πsinA8GN/sinπ2N, where N=Lq2/LP2, LP being the Planck length and Lq denoting, generically, the q-deformed cosmic event horizon distance Lq. Motivated by this, we now extend the framework constructed in Jalalzadeh (2022) towards the Friedmann and Raychaudhuri equations describing spatially homogeneous and isotropic universe dynamics. Our procedure in this paper involves a twofold assumption. On the one hand, we take the entropy associated with the apparent horizon of the Robertson–Walker universe in the form of the aforementioned expression. On the other hand, we assume that the unified first law of thermodynamics, dE=TdS+WdV, holds on the apparent horizon. Subsequently, we find a novel modified cosmological scenario characterized by quantum-deformed (q-deformed) Friedmann and Raychaudhuri equations containing additional components that generate an effective dark energy sector. Our results indicate an effective dark energy component, which can explain the Universe’s late-time acceleration. Moreover, the Universe follows the standard thermal history, with a transition redshift from deceleration to acceleration at ztran=0.5. More precisely, according to our model, at a redshift of z=0.377, the effective dark energy dominates with a de Sitter universe in the long run. We include the evolution of luminosity distance, μ, the Hubble parameter, H(z), and the deceleration parameter, q(z), versus redshift. Finally, we have conducted a comparative analysis of our proposed model with others involving non-extensive entropies.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.dark.2023.101320</doi><orcidid>https://orcid.org/0000-0001-7170-8952</orcidid><orcidid>https://orcid.org/0000-0003-4854-2960</orcidid><orcidid>https://orcid.org/0000-0003-0941-8422</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2212-6864
ispartof PHYSICS OF THE DARK UNIVERSE, 2023-12, Vol.42, p.101320, Article 101320
issn 2212-6864
2212-6864
language eng
recordid cdi_crossref_primary_10_1016_j_dark_2023_101320
source ScienceDirect Freedom Collection
subjects Entropy
Holographic dark energy
Modified cosmology
q-deformation
title Modified cosmology from quantum deformed entropy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modified%20cosmology%20from%20quantum%20deformed%20entropy&rft.jtitle=PHYSICS%20OF%20THE%20DARK%20UNIVERSE&rft.au=Jalalzadeh,%20S.&rft.date=2023-12&rft.volume=42&rft.spage=101320&rft.pages=101320-&rft.artnum=101320&rft.issn=2212-6864&rft.eissn=2212-6864&rft_id=info:doi/10.1016/j.dark.2023.101320&rft_dat=%3Celsevier_cross%3ES2212686423001541%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-59336d0af669722244e18517e0f7c687c64e271c80d4c26ffd6b0918e63417223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true