Loading…
High-performance MoO3/g-CN supercapacitor electrode material utilizing MoO3 nanoparticles grafted on g-CN nanosheets
The pursuit of addressing the escalating and crucial energy demands of humanity has served as an inspiration for the discovery and creation of advanced nanomaterials used to facilitate convenient and sustainable energy-storing materials and systems. A cost-effective and environmentally safe nanocomp...
Saved in:
Published in: | Diamond and related materials 2024-03, Vol.143, p.110892, Article 110892 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The pursuit of addressing the escalating and crucial energy demands of humanity has served as an inspiration for the discovery and creation of advanced nanomaterials used to facilitate convenient and sustainable energy-storing materials and systems. A cost-effective and environmentally safe nanocomposite was synthesized through the incorporation of molybdenum oxide (MoO3) and 2-D graphitic carbon nitride (g-CN) nanosheets by hydrothermal route. The Cs of the g-CN, MoO3 and MoO3/g-CN at 10 mV s−1 were measured to be 212.146, 350.49 and 693.56 F g−1 respectively, in a 2 M KOH by CV. The Cs for g-CN, MoO3 and MoO3/g-CN nanocomposite at 1 A g−1 were displayed as 852, 688 and 283 F g−1 by GCD. The Ed of the nanocomposite was significantly elevated to 35.4 Wh kg−1 when subjected to Pd of 273 W kg−1. MoO3/g-CN nanocomposites have advantageous characteristics for energy-storing devices due to their notable increased surface area, enhanced electric conduction, and synergistic effect of MoO3 and g-CN. The utilization of MoO3/g-CN nanocomposite presents a viable and pragmatic approach to address the prevailing energy problem by serving as an effective energy storage option.
[Display omitted] |
---|---|
ISSN: | 0925-9635 1879-0062 |
DOI: | 10.1016/j.diamond.2024.110892 |