Loading…
Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds
A supervised learning model combined with genetic algorithm is proposed to predict charge transfer efficiency of nanodiamonds. The model is chosen among ten models whose parameters are modified by genetic algorithm with ten-fold cross-validation, ensuring the accuracy of model. Generalization abilit...
Saved in:
Published in: | Diamond and related materials 2024-04, Vol.144, p.110931, Article 110931 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c257t-3a30a715abd73c080386182a2b9936861694ea17ca5107c2a6941690bbece8d53 |
container_end_page | |
container_issue | |
container_start_page | 110931 |
container_title | Diamond and related materials |
container_volume | 144 |
creator | Wang, Peng Ren, Jingli |
description | A supervised learning model combined with genetic algorithm is proposed to predict charge transfer efficiency of nanodiamonds. The model is chosen among ten models whose parameters are modified by genetic algorithm with ten-fold cross-validation, ensuring the accuracy of model. Generalization ability and reliability are further verified by prediction error and consistency tests of twin nanodiamonds. A hydrogenated surface nanodiamond with low ionization potential and a clean nanodiamond with low electron affinity are designed based on particle swarm optimization. It is further found via SHAP analysis that electron affinity is inhibited by surfaces with a {111} surface below 30 % or a {100} surface above 80 %. Similarly, ionization potential is reduced when the hybrid ratios of sp1 and sp2 are separately greater than 0.501 % or lower than 5.690 %.
[Display omitted] |
doi_str_mv | 10.1016/j.diamond.2024.110931 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_diamond_2024_110931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963524001444</els_id><sourcerecordid>S0925963524001444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-3a30a715abd73c080386182a2b9936861694ea17ca5107c2a6941690bbece8d53</originalsourceid><addsrcrecordid>eNqFkFtLAzEUhIMoWKs_Qcgf2G0u3UueRIo3KAiiz-FscrabspuUZCv237u1fffpnBmYYfgIuecs54yXi21uHQzB21wwscw5Z0ryCzLjdaUyxkpxSWZMiSJTpSyuyU1KW8a4UEs-I4cP7B00PVLwluLPrgfn__QApnMeaY8QvfMb2oZITQdxg3SM4FOLcQFjGJyhaYx7M-4j0og9jC741LldoqGl3cHGsEEPI1rqwYfz1nRLrlroE96d75x8PT99rl6z9fvL2-pxnRlRVGMmQTKoeAGNraRhNZN1yWsBolFKltNfqiUCrwwUnFVGwKQnjzUNGqxtIeekOPWaGFKK2OpddAPEg-ZMH_nprT5v0kd--sRvyj2ccjiN-3YYdTIOvUHrIppR2-D-afgFRMJ-qQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Peng ; Ren, Jingli</creator><creatorcontrib>Wang, Peng ; Ren, Jingli</creatorcontrib><description>A supervised learning model combined with genetic algorithm is proposed to predict charge transfer efficiency of nanodiamonds. The model is chosen among ten models whose parameters are modified by genetic algorithm with ten-fold cross-validation, ensuring the accuracy of model. Generalization ability and reliability are further verified by prediction error and consistency tests of twin nanodiamonds. A hydrogenated surface nanodiamond with low ionization potential and a clean nanodiamond with low electron affinity are designed based on particle swarm optimization. It is further found via SHAP analysis that electron affinity is inhibited by surfaces with a {111} surface below 30 % or a {100} surface above 80 %. Similarly, ionization potential is reduced when the hybrid ratios of sp1 and sp2 are separately greater than 0.501 % or lower than 5.690 %.
[Display omitted]</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2024.110931</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Electron affinity ; Interpretability analysis ; Ionization potential ; Supervised learning</subject><ispartof>Diamond and related materials, 2024-04, Vol.144, p.110931, Article 110931</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-3a30a715abd73c080386182a2b9936861694ea17ca5107c2a6941690bbece8d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Ren, Jingli</creatorcontrib><title>Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds</title><title>Diamond and related materials</title><description>A supervised learning model combined with genetic algorithm is proposed to predict charge transfer efficiency of nanodiamonds. The model is chosen among ten models whose parameters are modified by genetic algorithm with ten-fold cross-validation, ensuring the accuracy of model. Generalization ability and reliability are further verified by prediction error and consistency tests of twin nanodiamonds. A hydrogenated surface nanodiamond with low ionization potential and a clean nanodiamond with low electron affinity are designed based on particle swarm optimization. It is further found via SHAP analysis that electron affinity is inhibited by surfaces with a {111} surface below 30 % or a {100} surface above 80 %. Similarly, ionization potential is reduced when the hybrid ratios of sp1 and sp2 are separately greater than 0.501 % or lower than 5.690 %.
[Display omitted]</description><subject>Electron affinity</subject><subject>Interpretability analysis</subject><subject>Ionization potential</subject><subject>Supervised learning</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEUhIMoWKs_Qcgf2G0u3UueRIo3KAiiz-FscrabspuUZCv237u1fffpnBmYYfgIuecs54yXi21uHQzB21wwscw5Z0ryCzLjdaUyxkpxSWZMiSJTpSyuyU1KW8a4UEs-I4cP7B00PVLwluLPrgfn__QApnMeaY8QvfMb2oZITQdxg3SM4FOLcQFjGJyhaYx7M-4j0og9jC741LldoqGl3cHGsEEPI1rqwYfz1nRLrlroE96d75x8PT99rl6z9fvL2-pxnRlRVGMmQTKoeAGNraRhNZN1yWsBolFKltNfqiUCrwwUnFVGwKQnjzUNGqxtIeekOPWaGFKK2OpddAPEg-ZMH_nprT5v0kd--sRvyj2ccjiN-3YYdTIOvUHrIppR2-D-afgFRMJ-qQ</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Wang, Peng</creator><creator>Ren, Jingli</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202404</creationdate><title>Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds</title><author>Wang, Peng ; Ren, Jingli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-3a30a715abd73c080386182a2b9936861694ea17ca5107c2a6941690bbece8d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electron affinity</topic><topic>Interpretability analysis</topic><topic>Ionization potential</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Ren, Jingli</creatorcontrib><collection>CrossRef</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Ren, Jingli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds</atitle><jtitle>Diamond and related materials</jtitle><date>2024-04</date><risdate>2024</risdate><volume>144</volume><spage>110931</spage><pages>110931-</pages><artnum>110931</artnum><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>A supervised learning model combined with genetic algorithm is proposed to predict charge transfer efficiency of nanodiamonds. The model is chosen among ten models whose parameters are modified by genetic algorithm with ten-fold cross-validation, ensuring the accuracy of model. Generalization ability and reliability are further verified by prediction error and consistency tests of twin nanodiamonds. A hydrogenated surface nanodiamond with low ionization potential and a clean nanodiamond with low electron affinity are designed based on particle swarm optimization. It is further found via SHAP analysis that electron affinity is inhibited by surfaces with a {111} surface below 30 % or a {100} surface above 80 %. Similarly, ionization potential is reduced when the hybrid ratios of sp1 and sp2 are separately greater than 0.501 % or lower than 5.690 %.
[Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2024.110931</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-9635 |
ispartof | Diamond and related materials, 2024-04, Vol.144, p.110931, Article 110931 |
issn | 0925-9635 1879-0062 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_diamond_2024_110931 |
source | ScienceDirect Freedom Collection |
subjects | Electron affinity Interpretability analysis Ionization potential Supervised learning |
title | Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T18%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20and%20explainable%20machine%20learning%20for%20charge%20transfer/atomic%20structure%20relationships%20of%20hydrogenated%20nanodiamonds&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Wang,%20Peng&rft.date=2024-04&rft.volume=144&rft.spage=110931&rft.pages=110931-&rft.artnum=110931&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2024.110931&rft_dat=%3Celsevier_cross%3ES0925963524001444%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-3a30a715abd73c080386182a2b9936861694ea17ca5107c2a6941690bbece8d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |