Loading…

Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds

A supervised learning model combined with genetic algorithm is proposed to predict charge transfer efficiency of nanodiamonds. The model is chosen among ten models whose parameters are modified by genetic algorithm with ten-fold cross-validation, ensuring the accuracy of model. Generalization abilit...

Full description

Saved in:
Bibliographic Details
Published in:Diamond and related materials 2024-04, Vol.144, p.110931, Article 110931
Main Authors: Wang, Peng, Ren, Jingli
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c257t-3a30a715abd73c080386182a2b9936861694ea17ca5107c2a6941690bbece8d53
container_end_page
container_issue
container_start_page 110931
container_title Diamond and related materials
container_volume 144
creator Wang, Peng
Ren, Jingli
description A supervised learning model combined with genetic algorithm is proposed to predict charge transfer efficiency of nanodiamonds. The model is chosen among ten models whose parameters are modified by genetic algorithm with ten-fold cross-validation, ensuring the accuracy of model. Generalization ability and reliability are further verified by prediction error and consistency tests of twin nanodiamonds. A hydrogenated surface nanodiamond with low ionization potential and a clean nanodiamond with low electron affinity are designed based on particle swarm optimization. It is further found via SHAP analysis that electron affinity is inhibited by surfaces with a {111} surface below 30 % or a {100} surface above 80 %. Similarly, ionization potential is reduced when the hybrid ratios of sp1 and sp2 are separately greater than 0.501 % or lower than 5.690 %. [Display omitted]
doi_str_mv 10.1016/j.diamond.2024.110931
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_diamond_2024_110931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925963524001444</els_id><sourcerecordid>S0925963524001444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-3a30a715abd73c080386182a2b9936861694ea17ca5107c2a6941690bbece8d53</originalsourceid><addsrcrecordid>eNqFkFtLAzEUhIMoWKs_Qcgf2G0u3UueRIo3KAiiz-FscrabspuUZCv237u1fffpnBmYYfgIuecs54yXi21uHQzB21wwscw5Z0ryCzLjdaUyxkpxSWZMiSJTpSyuyU1KW8a4UEs-I4cP7B00PVLwluLPrgfn__QApnMeaY8QvfMb2oZITQdxg3SM4FOLcQFjGJyhaYx7M-4j0og9jC741LldoqGl3cHGsEEPI1rqwYfz1nRLrlroE96d75x8PT99rl6z9fvL2-pxnRlRVGMmQTKoeAGNraRhNZN1yWsBolFKltNfqiUCrwwUnFVGwKQnjzUNGqxtIeekOPWaGFKK2OpddAPEg-ZMH_nprT5v0kd--sRvyj2ccjiN-3YYdTIOvUHrIppR2-D-afgFRMJ-qQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Peng ; Ren, Jingli</creator><creatorcontrib>Wang, Peng ; Ren, Jingli</creatorcontrib><description>A supervised learning model combined with genetic algorithm is proposed to predict charge transfer efficiency of nanodiamonds. The model is chosen among ten models whose parameters are modified by genetic algorithm with ten-fold cross-validation, ensuring the accuracy of model. Generalization ability and reliability are further verified by prediction error and consistency tests of twin nanodiamonds. A hydrogenated surface nanodiamond with low ionization potential and a clean nanodiamond with low electron affinity are designed based on particle swarm optimization. It is further found via SHAP analysis that electron affinity is inhibited by surfaces with a {111} surface below 30 % or a {100} surface above 80 %. Similarly, ionization potential is reduced when the hybrid ratios of sp1 and sp2 are separately greater than 0.501 % or lower than 5.690 %. [Display omitted]</description><identifier>ISSN: 0925-9635</identifier><identifier>EISSN: 1879-0062</identifier><identifier>DOI: 10.1016/j.diamond.2024.110931</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Electron affinity ; Interpretability analysis ; Ionization potential ; Supervised learning</subject><ispartof>Diamond and related materials, 2024-04, Vol.144, p.110931, Article 110931</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c257t-3a30a715abd73c080386182a2b9936861694ea17ca5107c2a6941690bbece8d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Ren, Jingli</creatorcontrib><title>Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds</title><title>Diamond and related materials</title><description>A supervised learning model combined with genetic algorithm is proposed to predict charge transfer efficiency of nanodiamonds. The model is chosen among ten models whose parameters are modified by genetic algorithm with ten-fold cross-validation, ensuring the accuracy of model. Generalization ability and reliability are further verified by prediction error and consistency tests of twin nanodiamonds. A hydrogenated surface nanodiamond with low ionization potential and a clean nanodiamond with low electron affinity are designed based on particle swarm optimization. It is further found via SHAP analysis that electron affinity is inhibited by surfaces with a {111} surface below 30 % or a {100} surface above 80 %. Similarly, ionization potential is reduced when the hybrid ratios of sp1 and sp2 are separately greater than 0.501 % or lower than 5.690 %. [Display omitted]</description><subject>Electron affinity</subject><subject>Interpretability analysis</subject><subject>Ionization potential</subject><subject>Supervised learning</subject><issn>0925-9635</issn><issn>1879-0062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEUhIMoWKs_Qcgf2G0u3UueRIo3KAiiz-FscrabspuUZCv237u1fffpnBmYYfgIuecs54yXi21uHQzB21wwscw5Z0ryCzLjdaUyxkpxSWZMiSJTpSyuyU1KW8a4UEs-I4cP7B00PVLwluLPrgfn__QApnMeaY8QvfMb2oZITQdxg3SM4FOLcQFjGJyhaYx7M-4j0og9jC741LldoqGl3cHGsEEPI1rqwYfz1nRLrlroE96d75x8PT99rl6z9fvL2-pxnRlRVGMmQTKoeAGNraRhNZN1yWsBolFKltNfqiUCrwwUnFVGwKQnjzUNGqxtIeekOPWaGFKK2OpddAPEg-ZMH_nprT5v0kd--sRvyj2ccjiN-3YYdTIOvUHrIppR2-D-afgFRMJ-qQ</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Wang, Peng</creator><creator>Ren, Jingli</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202404</creationdate><title>Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds</title><author>Wang, Peng ; Ren, Jingli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-3a30a715abd73c080386182a2b9936861694ea17ca5107c2a6941690bbece8d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Electron affinity</topic><topic>Interpretability analysis</topic><topic>Ionization potential</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Ren, Jingli</creatorcontrib><collection>CrossRef</collection><jtitle>Diamond and related materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Ren, Jingli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds</atitle><jtitle>Diamond and related materials</jtitle><date>2024-04</date><risdate>2024</risdate><volume>144</volume><spage>110931</spage><pages>110931-</pages><artnum>110931</artnum><issn>0925-9635</issn><eissn>1879-0062</eissn><abstract>A supervised learning model combined with genetic algorithm is proposed to predict charge transfer efficiency of nanodiamonds. The model is chosen among ten models whose parameters are modified by genetic algorithm with ten-fold cross-validation, ensuring the accuracy of model. Generalization ability and reliability are further verified by prediction error and consistency tests of twin nanodiamonds. A hydrogenated surface nanodiamond with low ionization potential and a clean nanodiamond with low electron affinity are designed based on particle swarm optimization. It is further found via SHAP analysis that electron affinity is inhibited by surfaces with a {111} surface below 30 % or a {100} surface above 80 %. Similarly, ionization potential is reduced when the hybrid ratios of sp1 and sp2 are separately greater than 0.501 % or lower than 5.690 %. [Display omitted]</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.diamond.2024.110931</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-9635
ispartof Diamond and related materials, 2024-04, Vol.144, p.110931, Article 110931
issn 0925-9635
1879-0062
language eng
recordid cdi_crossref_primary_10_1016_j_diamond_2024_110931
source ScienceDirect Freedom Collection
subjects Electron affinity
Interpretability analysis
Ionization potential
Supervised learning
title Reliable and explainable machine learning for charge transfer/atomic structure relationships of hydrogenated nanodiamonds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T18%3A25%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliable%20and%20explainable%20machine%20learning%20for%20charge%20transfer/atomic%20structure%20relationships%20of%20hydrogenated%20nanodiamonds&rft.jtitle=Diamond%20and%20related%20materials&rft.au=Wang,%20Peng&rft.date=2024-04&rft.volume=144&rft.spage=110931&rft.pages=110931-&rft.artnum=110931&rft.issn=0925-9635&rft.eissn=1879-0062&rft_id=info:doi/10.1016/j.diamond.2024.110931&rft_dat=%3Celsevier_cross%3ES0925963524001444%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c257t-3a30a715abd73c080386182a2b9936861694ea17ca5107c2a6941690bbece8d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true