Loading…

The maximum spectral radius of wheel-free graphs

A wheel graph is a graph formed by connecting a single vertex to all vertices of a cycle. A graph is called wheel-free if it does not contain any wheel graph as a subgraph. In 2010, Nikiforov proposed a Brualdi–Solheid–Turán type problem: what is the maximum spectral radius of a graph of order n tha...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics 2021-05, Vol.344 (5), p.112341, Article 112341
Main Authors: Zhao, Yanhua, Huang, Xueyi, Lin, Huiqiu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c300t-1674a7d96cea4f43993d8af4e72f99bc76b3ddd991421d0a9106009ef58d4cdd3
cites cdi_FETCH-LOGICAL-c300t-1674a7d96cea4f43993d8af4e72f99bc76b3ddd991421d0a9106009ef58d4cdd3
container_end_page
container_issue 5
container_start_page 112341
container_title Discrete mathematics
container_volume 344
creator Zhao, Yanhua
Huang, Xueyi
Lin, Huiqiu
description A wheel graph is a graph formed by connecting a single vertex to all vertices of a cycle. A graph is called wheel-free if it does not contain any wheel graph as a subgraph. In 2010, Nikiforov proposed a Brualdi–Solheid–Turán type problem: what is the maximum spectral radius of a graph of order n that does not contain subgraphs of particular kind. In this paper, we study the Brualdi–Solheid–Turán type problem for wheel-free graphs, and we determine the maximum (signless Laplacian) spectral radius of a wheel-free graph of order n. Furthermore, we characterize the extremal graphs.
doi_str_mv 10.1016/j.disc.2021.112341
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_disc_2021_112341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X21000546</els_id><sourcerecordid>S0012365X21000546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-1674a7d96cea4f43993d8af4e72f99bc76b3ddd991421d0a9106009ef58d4cdd3</originalsourceid><addsrcrecordid>eNp9z81KAzEQwPEgCtbqC3jaF9h1JkmzG_AixS8QvFToLaSZiU3p2pK0fry9W-rZ0zCH_zA_Ia4RGgQ0N6uGUgmNBIkNolQaT8QIu1bWpsP5qRgBoKyVmczPxUUpKxh2o7qRgNmSq95_p37fV2XLYZf9usqe0r5Um1h9LZnXdczM1Xv222W5FGfRrwtf_c2xeHu4n02f6pfXx-fp3UsdFMCuRtNq35I1gb2OWlmrqPNRcyujtYvQmoUiImtRSyTwFsEAWI6TjnQgUmMhj3dD3pSSObptTr3PPw7BHcxu5Q5mdzC7o3mIbo8RD599Js6uhMQfgSnlgeZok_7LfwFa219g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The maximum spectral radius of wheel-free graphs</title><source>Elsevier</source><creator>Zhao, Yanhua ; Huang, Xueyi ; Lin, Huiqiu</creator><creatorcontrib>Zhao, Yanhua ; Huang, Xueyi ; Lin, Huiqiu</creatorcontrib><description>A wheel graph is a graph formed by connecting a single vertex to all vertices of a cycle. A graph is called wheel-free if it does not contain any wheel graph as a subgraph. In 2010, Nikiforov proposed a Brualdi–Solheid–Turán type problem: what is the maximum spectral radius of a graph of order n that does not contain subgraphs of particular kind. In this paper, we study the Brualdi–Solheid–Turán type problem for wheel-free graphs, and we determine the maximum (signless Laplacian) spectral radius of a wheel-free graph of order n. Furthermore, we characterize the extremal graphs.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2021.112341</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Extremal graph ; Quotient matrix ; Spectral radius ; Wheel-free graph</subject><ispartof>Discrete mathematics, 2021-05, Vol.344 (5), p.112341, Article 112341</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-1674a7d96cea4f43993d8af4e72f99bc76b3ddd991421d0a9106009ef58d4cdd3</citedby><cites>FETCH-LOGICAL-c300t-1674a7d96cea4f43993d8af4e72f99bc76b3ddd991421d0a9106009ef58d4cdd3</cites><orcidid>0000-0003-0200-2096</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Yanhua</creatorcontrib><creatorcontrib>Huang, Xueyi</creatorcontrib><creatorcontrib>Lin, Huiqiu</creatorcontrib><title>The maximum spectral radius of wheel-free graphs</title><title>Discrete mathematics</title><description>A wheel graph is a graph formed by connecting a single vertex to all vertices of a cycle. A graph is called wheel-free if it does not contain any wheel graph as a subgraph. In 2010, Nikiforov proposed a Brualdi–Solheid–Turán type problem: what is the maximum spectral radius of a graph of order n that does not contain subgraphs of particular kind. In this paper, we study the Brualdi–Solheid–Turán type problem for wheel-free graphs, and we determine the maximum (signless Laplacian) spectral radius of a wheel-free graph of order n. Furthermore, we characterize the extremal graphs.</description><subject>Extremal graph</subject><subject>Quotient matrix</subject><subject>Spectral radius</subject><subject>Wheel-free graph</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9z81KAzEQwPEgCtbqC3jaF9h1JkmzG_AixS8QvFToLaSZiU3p2pK0fry9W-rZ0zCH_zA_Ia4RGgQ0N6uGUgmNBIkNolQaT8QIu1bWpsP5qRgBoKyVmczPxUUpKxh2o7qRgNmSq95_p37fV2XLYZf9usqe0r5Um1h9LZnXdczM1Xv222W5FGfRrwtf_c2xeHu4n02f6pfXx-fp3UsdFMCuRtNq35I1gb2OWlmrqPNRcyujtYvQmoUiImtRSyTwFsEAWI6TjnQgUmMhj3dD3pSSObptTr3PPw7BHcxu5Q5mdzC7o3mIbo8RD599Js6uhMQfgSnlgeZok_7LfwFa219g</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Zhao, Yanhua</creator><creator>Huang, Xueyi</creator><creator>Lin, Huiqiu</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0200-2096</orcidid></search><sort><creationdate>202105</creationdate><title>The maximum spectral radius of wheel-free graphs</title><author>Zhao, Yanhua ; Huang, Xueyi ; Lin, Huiqiu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-1674a7d96cea4f43993d8af4e72f99bc76b3ddd991421d0a9106009ef58d4cdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Extremal graph</topic><topic>Quotient matrix</topic><topic>Spectral radius</topic><topic>Wheel-free graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Yanhua</creatorcontrib><creatorcontrib>Huang, Xueyi</creatorcontrib><creatorcontrib>Lin, Huiqiu</creatorcontrib><collection>CrossRef</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Yanhua</au><au>Huang, Xueyi</au><au>Lin, Huiqiu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The maximum spectral radius of wheel-free graphs</atitle><jtitle>Discrete mathematics</jtitle><date>2021-05</date><risdate>2021</risdate><volume>344</volume><issue>5</issue><spage>112341</spage><pages>112341-</pages><artnum>112341</artnum><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>A wheel graph is a graph formed by connecting a single vertex to all vertices of a cycle. A graph is called wheel-free if it does not contain any wheel graph as a subgraph. In 2010, Nikiforov proposed a Brualdi–Solheid–Turán type problem: what is the maximum spectral radius of a graph of order n that does not contain subgraphs of particular kind. In this paper, we study the Brualdi–Solheid–Turán type problem for wheel-free graphs, and we determine the maximum (signless Laplacian) spectral radius of a wheel-free graph of order n. Furthermore, we characterize the extremal graphs.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2021.112341</doi><orcidid>https://orcid.org/0000-0003-0200-2096</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2021-05, Vol.344 (5), p.112341, Article 112341
issn 0012-365X
1872-681X
language eng
recordid cdi_crossref_primary_10_1016_j_disc_2021_112341
source Elsevier
subjects Extremal graph
Quotient matrix
Spectral radius
Wheel-free graph
title The maximum spectral radius of wheel-free graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A41%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20maximum%20spectral%20radius%20of%20wheel-free%20graphs&rft.jtitle=Discrete%20mathematics&rft.au=Zhao,%20Yanhua&rft.date=2021-05&rft.volume=344&rft.issue=5&rft.spage=112341&rft.pages=112341-&rft.artnum=112341&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2021.112341&rft_dat=%3Celsevier_cross%3ES0012365X21000546%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-1674a7d96cea4f43993d8af4e72f99bc76b3ddd991421d0a9106009ef58d4cdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true