Loading…
Spectra of strongly Deza graphs
A Deza graph G with parameters (n,k,b,a) is a k-regular graph with n vertices such that any two distinct vertices have b or a common neighbours. The children GA and GB of a Deza graph G are defined on the vertex set of G such that every two distinct vertices are adjacent in GA or GB if and only if t...
Saved in:
Published in: | Discrete mathematics 2021-12, Vol.344 (12), p.112622, Article 112622 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c300t-d9998a2d0a55aab9d4f68b1240f48eb57be3a17b5d12a6f3cd62a7a9d32e316d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-d9998a2d0a55aab9d4f68b1240f48eb57be3a17b5d12a6f3cd62a7a9d32e316d3 |
container_end_page | |
container_issue | 12 |
container_start_page | 112622 |
container_title | Discrete mathematics |
container_volume | 344 |
creator | Akbari, Saieed Haemers, Willem H. Hosseinzadeh, Mohammad Ali Kabanov, Vladislav V. Konstantinova, Elena V. Shalaginov, Leonid |
description | A Deza graph G with parameters (n,k,b,a) is a k-regular graph with n vertices such that any two distinct vertices have b or a common neighbours. The children GA and GB of a Deza graph G are defined on the vertex set of G such that every two distinct vertices are adjacent in GA or GB if and only if they have a or b common neighbours, respectively. A strongly Deza graph is a Deza graph with strongly regular children. In this paper we give a spectral characterisation of strongly Deza graphs, show relationships between eigenvalues, and study strongly Deza graphs which are distance-regular. |
doi_str_mv | 10.1016/j.disc.2021.112622 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_disc_2021_112622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X21003356</els_id><sourcerecordid>S0012365X21003356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-d9998a2d0a55aab9d4f68b1240f48eb57be3a17b5d12a6f3cd62a7a9d32e316d3</originalsourceid><addsrcrecordid>eNp9z81Kw0AQwPFFFKzVF_BiXiBxZzbZbMCLVKtCwYMKvS2T_agJtQm7QahPb0I8exrm8B_mx9g18Aw4yNs2s000GXKEDAAl4glbgCoxlQq2p2zBOWAqZLE9ZxcxtnzcpVALdvPWOzMESjqfxCF0h93-mDy4H0p2gfrPeMnOPO2ju_qbS_axfnxfPaeb16eX1f0mNYLzIbVVVSlCy6koiOrK5l6qGjDnPleuLsraCYKyLiwgSS-MlUglVVagEyCtWDKc75rQxRic131ovigcNXA9EXWrJ6KeiHomjtHdHLnxs-_GBR1N4w7G2SaMKm275r_8FyxZWUM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectra of strongly Deza graphs</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Akbari, Saieed ; Haemers, Willem H. ; Hosseinzadeh, Mohammad Ali ; Kabanov, Vladislav V. ; Konstantinova, Elena V. ; Shalaginov, Leonid</creator><creatorcontrib>Akbari, Saieed ; Haemers, Willem H. ; Hosseinzadeh, Mohammad Ali ; Kabanov, Vladislav V. ; Konstantinova, Elena V. ; Shalaginov, Leonid</creatorcontrib><description>A Deza graph G with parameters (n,k,b,a) is a k-regular graph with n vertices such that any two distinct vertices have b or a common neighbours. The children GA and GB of a Deza graph G are defined on the vertex set of G such that every two distinct vertices are adjacent in GA or GB if and only if they have a or b common neighbours, respectively. A strongly Deza graph is a Deza graph with strongly regular children. In this paper we give a spectral characterisation of strongly Deza graphs, show relationships between eigenvalues, and study strongly Deza graphs which are distance-regular.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2021.112622</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Cospectral graphs ; Deza graph ; Distance-regular graph ; Divisible design graph ; Eigenvalues ; Strongly regular graph</subject><ispartof>Discrete mathematics, 2021-12, Vol.344 (12), p.112622, Article 112622</ispartof><rights>2021 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-d9998a2d0a55aab9d4f68b1240f48eb57be3a17b5d12a6f3cd62a7a9d32e316d3</citedby><cites>FETCH-LOGICAL-c300t-d9998a2d0a55aab9d4f68b1240f48eb57be3a17b5d12a6f3cd62a7a9d32e316d3</cites><orcidid>0000-0002-3457-645X ; 0000-0001-7520-3302 ; 0000-0001-6912-2493</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Akbari, Saieed</creatorcontrib><creatorcontrib>Haemers, Willem H.</creatorcontrib><creatorcontrib>Hosseinzadeh, Mohammad Ali</creatorcontrib><creatorcontrib>Kabanov, Vladislav V.</creatorcontrib><creatorcontrib>Konstantinova, Elena V.</creatorcontrib><creatorcontrib>Shalaginov, Leonid</creatorcontrib><title>Spectra of strongly Deza graphs</title><title>Discrete mathematics</title><description>A Deza graph G with parameters (n,k,b,a) is a k-regular graph with n vertices such that any two distinct vertices have b or a common neighbours. The children GA and GB of a Deza graph G are defined on the vertex set of G such that every two distinct vertices are adjacent in GA or GB if and only if they have a or b common neighbours, respectively. A strongly Deza graph is a Deza graph with strongly regular children. In this paper we give a spectral characterisation of strongly Deza graphs, show relationships between eigenvalues, and study strongly Deza graphs which are distance-regular.</description><subject>Cospectral graphs</subject><subject>Deza graph</subject><subject>Distance-regular graph</subject><subject>Divisible design graph</subject><subject>Eigenvalues</subject><subject>Strongly regular graph</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9z81Kw0AQwPFFFKzVF_BiXiBxZzbZbMCLVKtCwYMKvS2T_agJtQm7QahPb0I8exrm8B_mx9g18Aw4yNs2s000GXKEDAAl4glbgCoxlQq2p2zBOWAqZLE9ZxcxtnzcpVALdvPWOzMESjqfxCF0h93-mDy4H0p2gfrPeMnOPO2ju_qbS_axfnxfPaeb16eX1f0mNYLzIbVVVSlCy6koiOrK5l6qGjDnPleuLsraCYKyLiwgSS-MlUglVVagEyCtWDKc75rQxRic131ovigcNXA9EXWrJ6KeiHomjtHdHLnxs-_GBR1N4w7G2SaMKm275r_8FyxZWUM</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Akbari, Saieed</creator><creator>Haemers, Willem H.</creator><creator>Hosseinzadeh, Mohammad Ali</creator><creator>Kabanov, Vladislav V.</creator><creator>Konstantinova, Elena V.</creator><creator>Shalaginov, Leonid</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3457-645X</orcidid><orcidid>https://orcid.org/0000-0001-7520-3302</orcidid><orcidid>https://orcid.org/0000-0001-6912-2493</orcidid></search><sort><creationdate>202112</creationdate><title>Spectra of strongly Deza graphs</title><author>Akbari, Saieed ; Haemers, Willem H. ; Hosseinzadeh, Mohammad Ali ; Kabanov, Vladislav V. ; Konstantinova, Elena V. ; Shalaginov, Leonid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-d9998a2d0a55aab9d4f68b1240f48eb57be3a17b5d12a6f3cd62a7a9d32e316d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cospectral graphs</topic><topic>Deza graph</topic><topic>Distance-regular graph</topic><topic>Divisible design graph</topic><topic>Eigenvalues</topic><topic>Strongly regular graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbari, Saieed</creatorcontrib><creatorcontrib>Haemers, Willem H.</creatorcontrib><creatorcontrib>Hosseinzadeh, Mohammad Ali</creatorcontrib><creatorcontrib>Kabanov, Vladislav V.</creatorcontrib><creatorcontrib>Konstantinova, Elena V.</creatorcontrib><creatorcontrib>Shalaginov, Leonid</creatorcontrib><collection>CrossRef</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbari, Saieed</au><au>Haemers, Willem H.</au><au>Hosseinzadeh, Mohammad Ali</au><au>Kabanov, Vladislav V.</au><au>Konstantinova, Elena V.</au><au>Shalaginov, Leonid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectra of strongly Deza graphs</atitle><jtitle>Discrete mathematics</jtitle><date>2021-12</date><risdate>2021</risdate><volume>344</volume><issue>12</issue><spage>112622</spage><pages>112622-</pages><artnum>112622</artnum><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>A Deza graph G with parameters (n,k,b,a) is a k-regular graph with n vertices such that any two distinct vertices have b or a common neighbours. The children GA and GB of a Deza graph G are defined on the vertex set of G such that every two distinct vertices are adjacent in GA or GB if and only if they have a or b common neighbours, respectively. A strongly Deza graph is a Deza graph with strongly regular children. In this paper we give a spectral characterisation of strongly Deza graphs, show relationships between eigenvalues, and study strongly Deza graphs which are distance-regular.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2021.112622</doi><orcidid>https://orcid.org/0000-0002-3457-645X</orcidid><orcidid>https://orcid.org/0000-0001-7520-3302</orcidid><orcidid>https://orcid.org/0000-0001-6912-2493</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2021-12, Vol.344 (12), p.112622, Article 112622 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_disc_2021_112622 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Cospectral graphs Deza graph Distance-regular graph Divisible design graph Eigenvalues Strongly regular graph |
title | Spectra of strongly Deza graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A09%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectra%20of%20strongly%20Deza%20graphs&rft.jtitle=Discrete%20mathematics&rft.au=Akbari,%20Saieed&rft.date=2021-12&rft.volume=344&rft.issue=12&rft.spage=112622&rft.pages=112622-&rft.artnum=112622&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2021.112622&rft_dat=%3Celsevier_cross%3ES0012365X21003356%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-d9998a2d0a55aab9d4f68b1240f48eb57be3a17b5d12a6f3cd62a7a9d32e316d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |