Loading…
On the zero-sum subsequences of modular restricted lengths
Let G be an additive finite abelian group and let ℓ be a positive integer. Denote by discℓ(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≠ℓ. Let disc(G) denote the smallest positive integer t such that every...
Saved in:
Published in: | Discrete mathematics 2024-06, Vol.347 (6), p.113967, Article 113967 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c251t-945e63f79394d8a473b346adf27cd028835164d90c22ebeff86e3d26b550a8f43 |
container_end_page | |
container_issue | 6 |
container_start_page | 113967 |
container_title | Discrete mathematics |
container_volume | 347 |
creator | Hong, Siao Zhao, Kevin |
description | Let G be an additive finite abelian group and let ℓ be a positive integer. Denote by discℓ(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≠ℓ. Let disc(G) denote the smallest positive integer t such that every sequence S over G of length |S|≥t has two nonempty zero-sum subsequences of distinct lengths. Gao et al. [8] proved that disc(G)=max{discℓ(G):ℓ∈N0}. In this paper, we continue to investigate this invariant discℓ(G) by introducing a new invariant Ek,u(G). Let k and u be positive integers with k≥2 and u∈[1,k]. Denote by Ek,u(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≢u (mod k). In addition to consider the exact value and inverse problem of discℓ(G), we also study the relationship between Ek,u(G) and disc(G), discℓ(G) for various types of abelian groups. In particular, we determine the exact value of Ek,u(G) for G=Cn with u∈[1,k−1] and that of Ek,1(G) for elementary abelian 2-groups G=C2r, respectively. |
doi_str_mv | 10.1016/j.disc.2024.113967 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_disc_2024_113967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X24000980</els_id><sourcerecordid>S0012365X24000980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-945e63f79394d8a473b346adf27cd028835164d90c22ebeff86e3d26b550a8f43</originalsourceid><addsrcrecordid>eNp9z81KxDAQwPEgCq6rL-ApL9Car6apeJHFL1jYi8LeQptM3JTdVjOtoE_vlnr2NMzhP8yPkGvOcs64vmlzH9HlggmVcy4rXZ6QBTelyLTh21OyYIyLTOpie04uEFt23LU0C3K76eiwA_oDqc9wPFAcG4TPEToHSPtAD70f93WiCXBI0Q3g6R6692GHl-Qs1HuEq7-5JG-PD6-r52y9eXpZ3a8zJwo-ZJUqQMtQVrJS3tSqlI1UuvZBlM4zYYwsuFa-Yk4IaCAEo0F6oZuiYLUJSi6JmO-61CMmCPYjxUOdvi1ndtLb1k56O-ntrD9Gd3MEx8--IiSLLk4oHxO4wfo-_pf_AggFYz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the zero-sum subsequences of modular restricted lengths</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hong, Siao ; Zhao, Kevin</creator><creatorcontrib>Hong, Siao ; Zhao, Kevin</creatorcontrib><description>Let G be an additive finite abelian group and let ℓ be a positive integer. Denote by discℓ(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≠ℓ. Let disc(G) denote the smallest positive integer t such that every sequence S over G of length |S|≥t has two nonempty zero-sum subsequences of distinct lengths. Gao et al. [8] proved that disc(G)=max{discℓ(G):ℓ∈N0}. In this paper, we continue to investigate this invariant discℓ(G) by introducing a new invariant Ek,u(G). Let k and u be positive integers with k≥2 and u∈[1,k]. Denote by Ek,u(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≢u (mod k). In addition to consider the exact value and inverse problem of discℓ(G), we also study the relationship between Ek,u(G) and disc(G), discℓ(G) for various types of abelian groups. In particular, we determine the exact value of Ek,u(G) for G=Cn with u∈[1,k−1] and that of Ek,1(G) for elementary abelian 2-groups G=C2r, respectively.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2024.113967</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Davenport constant ; Invariant [formula omitted] ; Zero-sum subsequence</subject><ispartof>Discrete mathematics, 2024-06, Vol.347 (6), p.113967, Article 113967</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-945e63f79394d8a473b346adf27cd028835164d90c22ebeff86e3d26b550a8f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hong, Siao</creatorcontrib><creatorcontrib>Zhao, Kevin</creatorcontrib><title>On the zero-sum subsequences of modular restricted lengths</title><title>Discrete mathematics</title><description>Let G be an additive finite abelian group and let ℓ be a positive integer. Denote by discℓ(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≠ℓ. Let disc(G) denote the smallest positive integer t such that every sequence S over G of length |S|≥t has two nonempty zero-sum subsequences of distinct lengths. Gao et al. [8] proved that disc(G)=max{discℓ(G):ℓ∈N0}. In this paper, we continue to investigate this invariant discℓ(G) by introducing a new invariant Ek,u(G). Let k and u be positive integers with k≥2 and u∈[1,k]. Denote by Ek,u(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≢u (mod k). In addition to consider the exact value and inverse problem of discℓ(G), we also study the relationship between Ek,u(G) and disc(G), discℓ(G) for various types of abelian groups. In particular, we determine the exact value of Ek,u(G) for G=Cn with u∈[1,k−1] and that of Ek,1(G) for elementary abelian 2-groups G=C2r, respectively.</description><subject>Davenport constant</subject><subject>Invariant [formula omitted]</subject><subject>Zero-sum subsequence</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9z81KxDAQwPEgCq6rL-ApL9Car6apeJHFL1jYi8LeQptM3JTdVjOtoE_vlnr2NMzhP8yPkGvOcs64vmlzH9HlggmVcy4rXZ6QBTelyLTh21OyYIyLTOpie04uEFt23LU0C3K76eiwA_oDqc9wPFAcG4TPEToHSPtAD70f93WiCXBI0Q3g6R6692GHl-Qs1HuEq7-5JG-PD6-r52y9eXpZ3a8zJwo-ZJUqQMtQVrJS3tSqlI1UuvZBlM4zYYwsuFa-Yk4IaCAEo0F6oZuiYLUJSi6JmO-61CMmCPYjxUOdvi1ndtLb1k56O-ntrD9Gd3MEx8--IiSLLk4oHxO4wfo-_pf_AggFYz0</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Hong, Siao</creator><creator>Zhao, Kevin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202406</creationdate><title>On the zero-sum subsequences of modular restricted lengths</title><author>Hong, Siao ; Zhao, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-945e63f79394d8a473b346adf27cd028835164d90c22ebeff86e3d26b550a8f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Davenport constant</topic><topic>Invariant [formula omitted]</topic><topic>Zero-sum subsequence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Siao</creatorcontrib><creatorcontrib>Zhao, Kevin</creatorcontrib><collection>CrossRef</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Siao</au><au>Zhao, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the zero-sum subsequences of modular restricted lengths</atitle><jtitle>Discrete mathematics</jtitle><date>2024-06</date><risdate>2024</risdate><volume>347</volume><issue>6</issue><spage>113967</spage><pages>113967-</pages><artnum>113967</artnum><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>Let G be an additive finite abelian group and let ℓ be a positive integer. Denote by discℓ(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≠ℓ. Let disc(G) denote the smallest positive integer t such that every sequence S over G of length |S|≥t has two nonempty zero-sum subsequences of distinct lengths. Gao et al. [8] proved that disc(G)=max{discℓ(G):ℓ∈N0}. In this paper, we continue to investigate this invariant discℓ(G) by introducing a new invariant Ek,u(G). Let k and u be positive integers with k≥2 and u∈[1,k]. Denote by Ek,u(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≢u (mod k). In addition to consider the exact value and inverse problem of discℓ(G), we also study the relationship between Ek,u(G) and disc(G), discℓ(G) for various types of abelian groups. In particular, we determine the exact value of Ek,u(G) for G=Cn with u∈[1,k−1] and that of Ek,1(G) for elementary abelian 2-groups G=C2r, respectively.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2024.113967</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2024-06, Vol.347 (6), p.113967, Article 113967 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_disc_2024_113967 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Davenport constant Invariant [formula omitted] Zero-sum subsequence |
title | On the zero-sum subsequences of modular restricted lengths |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20zero-sum%20subsequences%20of%20modular%20restricted%20lengths&rft.jtitle=Discrete%20mathematics&rft.au=Hong,%20Siao&rft.date=2024-06&rft.volume=347&rft.issue=6&rft.spage=113967&rft.pages=113967-&rft.artnum=113967&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2024.113967&rft_dat=%3Celsevier_cross%3ES0012365X24000980%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-945e63f79394d8a473b346adf27cd028835164d90c22ebeff86e3d26b550a8f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |