Loading…

On the zero-sum subsequences of modular restricted lengths

Let G be an additive finite abelian group and let ℓ be a positive integer. Denote by discℓ(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≠ℓ. Let disc(G) denote the smallest positive integer t such that every...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics 2024-06, Vol.347 (6), p.113967, Article 113967
Main Authors: Hong, Siao, Zhao, Kevin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c251t-945e63f79394d8a473b346adf27cd028835164d90c22ebeff86e3d26b550a8f43
container_end_page
container_issue 6
container_start_page 113967
container_title Discrete mathematics
container_volume 347
creator Hong, Siao
Zhao, Kevin
description Let G be an additive finite abelian group and let ℓ be a positive integer. Denote by discℓ(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≠ℓ. Let disc(G) denote the smallest positive integer t such that every sequence S over G of length |S|≥t has two nonempty zero-sum subsequences of distinct lengths. Gao et al. [8] proved that disc(G)=max⁡{discℓ(G):ℓ∈N0}. In this paper, we continue to investigate this invariant discℓ(G) by introducing a new invariant Ek,u(G). Let k and u be positive integers with k≥2 and u∈[1,k]. Denote by Ek,u(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≢u (mod k). In addition to consider the exact value and inverse problem of discℓ(G), we also study the relationship between Ek,u(G) and disc(G), discℓ(G) for various types of abelian groups. In particular, we determine the exact value of Ek,u(G) for G=Cn with u∈[1,k−1] and that of Ek,1(G) for elementary abelian 2-groups G=C2r, respectively.
doi_str_mv 10.1016/j.disc.2024.113967
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_disc_2024_113967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X24000980</els_id><sourcerecordid>S0012365X24000980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c251t-945e63f79394d8a473b346adf27cd028835164d90c22ebeff86e3d26b550a8f43</originalsourceid><addsrcrecordid>eNp9z81KxDAQwPEgCq6rL-ApL9Car6apeJHFL1jYi8LeQptM3JTdVjOtoE_vlnr2NMzhP8yPkGvOcs64vmlzH9HlggmVcy4rXZ6QBTelyLTh21OyYIyLTOpie04uEFt23LU0C3K76eiwA_oDqc9wPFAcG4TPEToHSPtAD70f93WiCXBI0Q3g6R6692GHl-Qs1HuEq7-5JG-PD6-r52y9eXpZ3a8zJwo-ZJUqQMtQVrJS3tSqlI1UuvZBlM4zYYwsuFa-Yk4IaCAEo0F6oZuiYLUJSi6JmO-61CMmCPYjxUOdvi1ndtLb1k56O-ntrD9Gd3MEx8--IiSLLk4oHxO4wfo-_pf_AggFYz0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the zero-sum subsequences of modular restricted lengths</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Hong, Siao ; Zhao, Kevin</creator><creatorcontrib>Hong, Siao ; Zhao, Kevin</creatorcontrib><description>Let G be an additive finite abelian group and let ℓ be a positive integer. Denote by discℓ(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≠ℓ. Let disc(G) denote the smallest positive integer t such that every sequence S over G of length |S|≥t has two nonempty zero-sum subsequences of distinct lengths. Gao et al. [8] proved that disc(G)=max⁡{discℓ(G):ℓ∈N0}. In this paper, we continue to investigate this invariant discℓ(G) by introducing a new invariant Ek,u(G). Let k and u be positive integers with k≥2 and u∈[1,k]. Denote by Ek,u(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≢u (mod k). In addition to consider the exact value and inverse problem of discℓ(G), we also study the relationship between Ek,u(G) and disc(G), discℓ(G) for various types of abelian groups. In particular, we determine the exact value of Ek,u(G) for G=Cn with u∈[1,k−1] and that of Ek,1(G) for elementary abelian 2-groups G=C2r, respectively.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2024.113967</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Davenport constant ; Invariant [formula omitted] ; Zero-sum subsequence</subject><ispartof>Discrete mathematics, 2024-06, Vol.347 (6), p.113967, Article 113967</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c251t-945e63f79394d8a473b346adf27cd028835164d90c22ebeff86e3d26b550a8f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hong, Siao</creatorcontrib><creatorcontrib>Zhao, Kevin</creatorcontrib><title>On the zero-sum subsequences of modular restricted lengths</title><title>Discrete mathematics</title><description>Let G be an additive finite abelian group and let ℓ be a positive integer. Denote by discℓ(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≠ℓ. Let disc(G) denote the smallest positive integer t such that every sequence S over G of length |S|≥t has two nonempty zero-sum subsequences of distinct lengths. Gao et al. [8] proved that disc(G)=max⁡{discℓ(G):ℓ∈N0}. In this paper, we continue to investigate this invariant discℓ(G) by introducing a new invariant Ek,u(G). Let k and u be positive integers with k≥2 and u∈[1,k]. Denote by Ek,u(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≢u (mod k). In addition to consider the exact value and inverse problem of discℓ(G), we also study the relationship between Ek,u(G) and disc(G), discℓ(G) for various types of abelian groups. In particular, we determine the exact value of Ek,u(G) for G=Cn with u∈[1,k−1] and that of Ek,1(G) for elementary abelian 2-groups G=C2r, respectively.</description><subject>Davenport constant</subject><subject>Invariant [formula omitted]</subject><subject>Zero-sum subsequence</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9z81KxDAQwPEgCq6rL-ApL9Car6apeJHFL1jYi8LeQptM3JTdVjOtoE_vlnr2NMzhP8yPkGvOcs64vmlzH9HlggmVcy4rXZ6QBTelyLTh21OyYIyLTOpie04uEFt23LU0C3K76eiwA_oDqc9wPFAcG4TPEToHSPtAD70f93WiCXBI0Q3g6R6692GHl-Qs1HuEq7-5JG-PD6-r52y9eXpZ3a8zJwo-ZJUqQMtQVrJS3tSqlI1UuvZBlM4zYYwsuFa-Yk4IaCAEo0F6oZuiYLUJSi6JmO-61CMmCPYjxUOdvi1ndtLb1k56O-ntrD9Gd3MEx8--IiSLLk4oHxO4wfo-_pf_AggFYz0</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Hong, Siao</creator><creator>Zhao, Kevin</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202406</creationdate><title>On the zero-sum subsequences of modular restricted lengths</title><author>Hong, Siao ; Zhao, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c251t-945e63f79394d8a473b346adf27cd028835164d90c22ebeff86e3d26b550a8f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Davenport constant</topic><topic>Invariant [formula omitted]</topic><topic>Zero-sum subsequence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Siao</creatorcontrib><creatorcontrib>Zhao, Kevin</creatorcontrib><collection>CrossRef</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Siao</au><au>Zhao, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the zero-sum subsequences of modular restricted lengths</atitle><jtitle>Discrete mathematics</jtitle><date>2024-06</date><risdate>2024</risdate><volume>347</volume><issue>6</issue><spage>113967</spage><pages>113967-</pages><artnum>113967</artnum><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>Let G be an additive finite abelian group and let ℓ be a positive integer. Denote by discℓ(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≠ℓ. Let disc(G) denote the smallest positive integer t such that every sequence S over G of length |S|≥t has two nonempty zero-sum subsequences of distinct lengths. Gao et al. [8] proved that disc(G)=max⁡{discℓ(G):ℓ∈N0}. In this paper, we continue to investigate this invariant discℓ(G) by introducing a new invariant Ek,u(G). Let k and u be positive integers with k≥2 and u∈[1,k]. Denote by Ek,u(G) the smallest positive integer t such that every sequence S over G of length |S|≥t has a nonempty zero-sum subsequence T with length |T|≢u (mod k). In addition to consider the exact value and inverse problem of discℓ(G), we also study the relationship between Ek,u(G) and disc(G), discℓ(G) for various types of abelian groups. In particular, we determine the exact value of Ek,u(G) for G=Cn with u∈[1,k−1] and that of Ek,1(G) for elementary abelian 2-groups G=C2r, respectively.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2024.113967</doi></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2024-06, Vol.347 (6), p.113967, Article 113967
issn 0012-365X
1872-681X
language eng
recordid cdi_crossref_primary_10_1016_j_disc_2024_113967
source ScienceDirect Freedom Collection 2022-2024
subjects Davenport constant
Invariant [formula omitted]
Zero-sum subsequence
title On the zero-sum subsequences of modular restricted lengths
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T09%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20zero-sum%20subsequences%20of%20modular%20restricted%20lengths&rft.jtitle=Discrete%20mathematics&rft.au=Hong,%20Siao&rft.date=2024-06&rft.volume=347&rft.issue=6&rft.spage=113967&rft.pages=113967-&rft.artnum=113967&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2024.113967&rft_dat=%3Celsevier_cross%3ES0012365X24000980%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c251t-945e63f79394d8a473b346adf27cd028835164d90c22ebeff86e3d26b550a8f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true