Loading…

Blind image deconvolution via dispersion minimization

In linear image restoration, the point spread function of the degrading system is assumed known even though this information is usually not available in real applications. As a result, both blur identification and image restoration must be performed from the observed noisy blurred image. This paper...

Full description

Saved in:
Bibliographic Details
Published in:Digital signal processing 2006-03, Vol.16 (2), p.137-148
Main Authors: Vural, C., Sethares, W.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In linear image restoration, the point spread function of the degrading system is assumed known even though this information is usually not available in real applications. As a result, both blur identification and image restoration must be performed from the observed noisy blurred image. This paper presents a computationally simple iterative blind image deconvolution method which is based on non-linear adaptive filtering. The new method is applicable to minimum as well as mixed phase blurs. The noisy blurred image is assumed to be the output of a two-dimensional linear shift-invariant system with an unknown point spread function contaminated by an additive noise. The method passes the noisy blurred image through a two-dimensional finite impulse response adaptive filter whose parameters are updated by minimizing the dispersion. When convergence occurs, the adaptive filter provides an approximate inverse of the point spread function. Moreover, its output is an estimate of the unobserved true image. Experimental results are provided.
ISSN:1051-2004
1095-4333
DOI:10.1016/j.dsp.2005.04.005