Loading…

Improved multiband structured subband adaptive filter algorithm with L0-norm regularization for sparse system identification

The improved multiband structured subband adaptive filter (IMSAF) algorithm improves the performance of normalized subband adaptive filter (NSAF) algorithm by employing the recent regressors at each subband. The present study introduces the IMSAF algorithm for sparse system identification. The L0-no...

Full description

Saved in:
Bibliographic Details
Published in:Digital signal processing 2022-04, Vol.122, p.103348, Article 103348
Main Authors: Heydari, Esmail, Abadi, Mohammad Shams Esfand, Khademiyan, Seyed Mahmoud
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c212t-dac428673135cf67797bf95cdaee56a70c058ffcf063c1b0befa8eb38030e3463
cites cdi_FETCH-LOGICAL-c212t-dac428673135cf67797bf95cdaee56a70c058ffcf063c1b0befa8eb38030e3463
container_end_page
container_issue
container_start_page 103348
container_title Digital signal processing
container_volume 122
creator Heydari, Esmail
Abadi, Mohammad Shams Esfand
Khademiyan, Seyed Mahmoud
description The improved multiband structured subband adaptive filter (IMSAF) algorithm improves the performance of normalized subband adaptive filter (NSAF) algorithm by employing the recent regressors at each subband. The present study introduces the IMSAF algorithm for sparse system identification. The L0-norm regularization term is applied to the proposed cost function of IMSAF and the L0-IMSAF is established. The L0-IMSAF has significantly better convergence speed than conventional IMSAF. In the following, the theoretical steady-state performance analysis of the L0-IMSAF is presented. To reduce the computational complexity of the L0-IMSAF, the selective regressor (SR) and the dynamic selective regressor (DSR) strategies are utilized and L0-SR-IMSAF and L0-DSR-IMSAF are proposed. The approaches in L0-SR-IMSAF and L0-DSR-IMSAF algorithms are based on the selection of the regressors at each subband. The L0-SR-IMSAF and L0-DSR-IMSAF have good convergence speed, low steady-state error, and low computational complexity features. The good performances of the proposed algorithms are demonstrated through several simulation results in sparse system identification.
doi_str_mv 10.1016/j.dsp.2021.103348
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_dsp_2021_103348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1051200421003870</els_id><sourcerecordid>S1051200421003870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-dac428673135cf67797bf95cdaee56a70c058ffcf063c1b0befa8eb38030e3463</originalsourceid><addsrcrecordid>eNp9kNtKAzEQhoMoWA8P4F1eYOtks6filRQPhYI3eh2yyaSm7IlJtlLx4d22Xnszh5_5f4aPsTsBcwGiuN_ObRjmKaRi2qXMqjM2E7DIk0xKeX6Yc5GkANkluwphCwBllhYz9rNqB-p3aHk7NtHXurM8RBpNHGkSw1gfJW31EP0OufNNROK62fTk42fLv6bK15B0PbWccDM2mvy3jr7vuOuJh0FTQB72IWLLvcUueufN8eCGXTjdBLz969fs4_npffmarN9eVsvHdWJSkcbEapOlVVFKIXPjirJclLVb5MZqxLzQJRjIK-eMg0IaUUONTldYywokoMwKec3EKddQHwKhUwP5VtNeCVAHfGqrJnzqgE-d8E2eh5MHp8d2HkkF47EzaD2hicr2_h_3L1VLfGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved multiband structured subband adaptive filter algorithm with L0-norm regularization for sparse system identification</title><source>ScienceDirect Journals</source><creator>Heydari, Esmail ; Abadi, Mohammad Shams Esfand ; Khademiyan, Seyed Mahmoud</creator><creatorcontrib>Heydari, Esmail ; Abadi, Mohammad Shams Esfand ; Khademiyan, Seyed Mahmoud</creatorcontrib><description>The improved multiband structured subband adaptive filter (IMSAF) algorithm improves the performance of normalized subband adaptive filter (NSAF) algorithm by employing the recent regressors at each subband. The present study introduces the IMSAF algorithm for sparse system identification. The L0-norm regularization term is applied to the proposed cost function of IMSAF and the L0-IMSAF is established. The L0-IMSAF has significantly better convergence speed than conventional IMSAF. In the following, the theoretical steady-state performance analysis of the L0-IMSAF is presented. To reduce the computational complexity of the L0-IMSAF, the selective regressor (SR) and the dynamic selective regressor (DSR) strategies are utilized and L0-SR-IMSAF and L0-DSR-IMSAF are proposed. The approaches in L0-SR-IMSAF and L0-DSR-IMSAF algorithms are based on the selection of the regressors at each subband. The L0-SR-IMSAF and L0-DSR-IMSAF have good convergence speed, low steady-state error, and low computational complexity features. The good performances of the proposed algorithms are demonstrated through several simulation results in sparse system identification.</description><identifier>ISSN: 1051-2004</identifier><identifier>EISSN: 1095-4333</identifier><identifier>DOI: 10.1016/j.dsp.2021.103348</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>[formula omitted]-norm ; Dynamic selective regressors ; IMSAF ; Selective regressors ; Sparse system ; Subband</subject><ispartof>Digital signal processing, 2022-04, Vol.122, p.103348, Article 103348</ispartof><rights>2021 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c212t-dac428673135cf67797bf95cdaee56a70c058ffcf063c1b0befa8eb38030e3463</citedby><cites>FETCH-LOGICAL-c212t-dac428673135cf67797bf95cdaee56a70c058ffcf063c1b0befa8eb38030e3463</cites><orcidid>0000-0002-9810-2819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Heydari, Esmail</creatorcontrib><creatorcontrib>Abadi, Mohammad Shams Esfand</creatorcontrib><creatorcontrib>Khademiyan, Seyed Mahmoud</creatorcontrib><title>Improved multiband structured subband adaptive filter algorithm with L0-norm regularization for sparse system identification</title><title>Digital signal processing</title><description>The improved multiband structured subband adaptive filter (IMSAF) algorithm improves the performance of normalized subband adaptive filter (NSAF) algorithm by employing the recent regressors at each subband. The present study introduces the IMSAF algorithm for sparse system identification. The L0-norm regularization term is applied to the proposed cost function of IMSAF and the L0-IMSAF is established. The L0-IMSAF has significantly better convergence speed than conventional IMSAF. In the following, the theoretical steady-state performance analysis of the L0-IMSAF is presented. To reduce the computational complexity of the L0-IMSAF, the selective regressor (SR) and the dynamic selective regressor (DSR) strategies are utilized and L0-SR-IMSAF and L0-DSR-IMSAF are proposed. The approaches in L0-SR-IMSAF and L0-DSR-IMSAF algorithms are based on the selection of the regressors at each subband. The L0-SR-IMSAF and L0-DSR-IMSAF have good convergence speed, low steady-state error, and low computational complexity features. The good performances of the proposed algorithms are demonstrated through several simulation results in sparse system identification.</description><subject>[formula omitted]-norm</subject><subject>Dynamic selective regressors</subject><subject>IMSAF</subject><subject>Selective regressors</subject><subject>Sparse system</subject><subject>Subband</subject><issn>1051-2004</issn><issn>1095-4333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kNtKAzEQhoMoWA8P4F1eYOtks6filRQPhYI3eh2yyaSm7IlJtlLx4d22Xnszh5_5f4aPsTsBcwGiuN_ObRjmKaRi2qXMqjM2E7DIk0xKeX6Yc5GkANkluwphCwBllhYz9rNqB-p3aHk7NtHXurM8RBpNHGkSw1gfJW31EP0OufNNROK62fTk42fLv6bK15B0PbWccDM2mvy3jr7vuOuJh0FTQB72IWLLvcUueufN8eCGXTjdBLz969fs4_npffmarN9eVsvHdWJSkcbEapOlVVFKIXPjirJclLVb5MZqxLzQJRjIK-eMg0IaUUONTldYywokoMwKec3EKddQHwKhUwP5VtNeCVAHfGqrJnzqgE-d8E2eh5MHp8d2HkkF47EzaD2hicr2_h_3L1VLfGQ</recordid><startdate>20220415</startdate><enddate>20220415</enddate><creator>Heydari, Esmail</creator><creator>Abadi, Mohammad Shams Esfand</creator><creator>Khademiyan, Seyed Mahmoud</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9810-2819</orcidid></search><sort><creationdate>20220415</creationdate><title>Improved multiband structured subband adaptive filter algorithm with L0-norm regularization for sparse system identification</title><author>Heydari, Esmail ; Abadi, Mohammad Shams Esfand ; Khademiyan, Seyed Mahmoud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-dac428673135cf67797bf95cdaee56a70c058ffcf063c1b0befa8eb38030e3463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>[formula omitted]-norm</topic><topic>Dynamic selective regressors</topic><topic>IMSAF</topic><topic>Selective regressors</topic><topic>Sparse system</topic><topic>Subband</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heydari, Esmail</creatorcontrib><creatorcontrib>Abadi, Mohammad Shams Esfand</creatorcontrib><creatorcontrib>Khademiyan, Seyed Mahmoud</creatorcontrib><collection>CrossRef</collection><jtitle>Digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heydari, Esmail</au><au>Abadi, Mohammad Shams Esfand</au><au>Khademiyan, Seyed Mahmoud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved multiband structured subband adaptive filter algorithm with L0-norm regularization for sparse system identification</atitle><jtitle>Digital signal processing</jtitle><date>2022-04-15</date><risdate>2022</risdate><volume>122</volume><spage>103348</spage><pages>103348-</pages><artnum>103348</artnum><issn>1051-2004</issn><eissn>1095-4333</eissn><abstract>The improved multiband structured subband adaptive filter (IMSAF) algorithm improves the performance of normalized subband adaptive filter (NSAF) algorithm by employing the recent regressors at each subband. The present study introduces the IMSAF algorithm for sparse system identification. The L0-norm regularization term is applied to the proposed cost function of IMSAF and the L0-IMSAF is established. The L0-IMSAF has significantly better convergence speed than conventional IMSAF. In the following, the theoretical steady-state performance analysis of the L0-IMSAF is presented. To reduce the computational complexity of the L0-IMSAF, the selective regressor (SR) and the dynamic selective regressor (DSR) strategies are utilized and L0-SR-IMSAF and L0-DSR-IMSAF are proposed. The approaches in L0-SR-IMSAF and L0-DSR-IMSAF algorithms are based on the selection of the regressors at each subband. The L0-SR-IMSAF and L0-DSR-IMSAF have good convergence speed, low steady-state error, and low computational complexity features. The good performances of the proposed algorithms are demonstrated through several simulation results in sparse system identification.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.dsp.2021.103348</doi><orcidid>https://orcid.org/0000-0002-9810-2819</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-2004
ispartof Digital signal processing, 2022-04, Vol.122, p.103348, Article 103348
issn 1051-2004
1095-4333
language eng
recordid cdi_crossref_primary_10_1016_j_dsp_2021_103348
source ScienceDirect Journals
subjects [formula omitted]-norm
Dynamic selective regressors
IMSAF
Selective regressors
Sparse system
Subband
title Improved multiband structured subband adaptive filter algorithm with L0-norm regularization for sparse system identification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A42%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20multiband%20structured%20subband%20adaptive%20filter%20algorithm%20with%20L0-norm%20regularization%20for%20sparse%20system%20identification&rft.jtitle=Digital%20signal%20processing&rft.au=Heydari,%20Esmail&rft.date=2022-04-15&rft.volume=122&rft.spage=103348&rft.pages=103348-&rft.artnum=103348&rft.issn=1051-2004&rft.eissn=1095-4333&rft_id=info:doi/10.1016/j.dsp.2021.103348&rft_dat=%3Celsevier_cross%3ES1051200421003870%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c212t-dac428673135cf67797bf95cdaee56a70c058ffcf063c1b0befa8eb38030e3463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true