Loading…
Micro LED defect detection with self-attention mechanism-based neural network
We propose a method utilizing a YOLO detector for the precise localization of defective chips and the identification of defect types within multi-scale multi-target images. To address the challenge of optimizing training costs and enhancing model generalization, we introduce an end-to-end deep neura...
Saved in:
Published in: | Digital signal processing 2024-06, Vol.149, p.104474, Article 104474 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c249t-190cb7bd6565f13bd889902377fae23bda3caf2484ed542afb53072668116a8c3 |
container_end_page | |
container_issue | |
container_start_page | 104474 |
container_title | Digital signal processing |
container_volume | 149 |
creator | Zhong, Zebang Li, Cheng Chen, Meiyun Wu, Heng Kiyoshi, Takamasu |
description | We propose a method utilizing a YOLO detector for the precise localization of defective chips and the identification of defect types within multi-scale multi-target images. To address the challenge of optimizing training costs and enhancing model generalization, we introduce an end-to-end deep neural network, CM-YOLOv5, specifically designed for chip detection. We incorporate a novel bottleneck layer, MA-CSP, in conjunction with Multi-Head Self-Attention mechanism (MHSA). Additionally, we propose a class-balanced loss function (CB-BCE Loss) to tackle the issue of uneven distribution of defective samples in the Micro LED dataset. To further enhance convergence speed and detection precision, we introduce the SIoU Loss combined with Meta-AconC. Our experimental results, conducted on the Micro LED dataset, demonstrate notable improvements with CM-YOLOv5 over the basic YOLOv5 algorithm. Specifically, CM-YOLOv5 exhibits a 3.8 % increase in mean average precision and a 3.7 % improvement in precision, surpassing current mainstream object detection algorithms, including YOLOR, YOLOX, and YOLOv6, etc., in terms of general evaluation metrics. Finally, upon deploying our proposed algorithm on the edge device NVIDIA Jetson Xavier NX, CM-YOLOv5 demonstrates commendable speed and detection performance in embedded scenarios. |
doi_str_mv | 10.1016/j.dsp.2024.104474 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_dsp_2024_104474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105120042400099X</els_id><sourcerecordid>S105120042400099X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-190cb7bd6565f13bd889902377fae23bda3caf2484ed542afb53072668116a8c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxAezyAy7jR5xErFApD6kVG1hbjj1WXdqksg0Vf49LWbO6c0e6ozuHkBsGUwZM3a6nLu2mHLgsXspGnpAJg66mUghxephrRjmAPCcXKa0BoJFcTchyGWwcq8X8oXLo0eYiuUgYh2of8qpKuPHU5IzD726LdmWGkLa0NwldNeBnNJsieT_Gjyty5s0m4fWfXpL3x_nb7JkuXp9eZvcLarnsMmUd2L7pnapV7ZnoXdt2HXDRNN4gL94IazyXrURXS258XwtouFItY8q0VlwSdrxbuqcU0etdDFsTvzUDfeCh17rw0Ace-sijZO6OGSzFvgJGnWzAwaILsTys3Rj-Sf8A5T5okQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micro LED defect detection with self-attention mechanism-based neural network</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Zhong, Zebang ; Li, Cheng ; Chen, Meiyun ; Wu, Heng ; Kiyoshi, Takamasu</creator><creatorcontrib>Zhong, Zebang ; Li, Cheng ; Chen, Meiyun ; Wu, Heng ; Kiyoshi, Takamasu</creatorcontrib><description>We propose a method utilizing a YOLO detector for the precise localization of defective chips and the identification of defect types within multi-scale multi-target images. To address the challenge of optimizing training costs and enhancing model generalization, we introduce an end-to-end deep neural network, CM-YOLOv5, specifically designed for chip detection. We incorporate a novel bottleneck layer, MA-CSP, in conjunction with Multi-Head Self-Attention mechanism (MHSA). Additionally, we propose a class-balanced loss function (CB-BCE Loss) to tackle the issue of uneven distribution of defective samples in the Micro LED dataset. To further enhance convergence speed and detection precision, we introduce the SIoU Loss combined with Meta-AconC. Our experimental results, conducted on the Micro LED dataset, demonstrate notable improvements with CM-YOLOv5 over the basic YOLOv5 algorithm. Specifically, CM-YOLOv5 exhibits a 3.8 % increase in mean average precision and a 3.7 % improvement in precision, surpassing current mainstream object detection algorithms, including YOLOR, YOLOX, and YOLOv6, etc., in terms of general evaluation metrics. Finally, upon deploying our proposed algorithm on the edge device NVIDIA Jetson Xavier NX, CM-YOLOv5 demonstrates commendable speed and detection performance in embedded scenarios.</description><identifier>ISSN: 1051-2004</identifier><identifier>EISSN: 1095-4333</identifier><identifier>DOI: 10.1016/j.dsp.2024.104474</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Class imbalance ; Deep convolutional neural network ; Model deployment ; Multi-head self-attention</subject><ispartof>Digital signal processing, 2024-06, Vol.149, p.104474, Article 104474</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-190cb7bd6565f13bd889902377fae23bda3caf2484ed542afb53072668116a8c3</cites><orcidid>0009-0006-8922-7739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhong, Zebang</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Chen, Meiyun</creatorcontrib><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Kiyoshi, Takamasu</creatorcontrib><title>Micro LED defect detection with self-attention mechanism-based neural network</title><title>Digital signal processing</title><description>We propose a method utilizing a YOLO detector for the precise localization of defective chips and the identification of defect types within multi-scale multi-target images. To address the challenge of optimizing training costs and enhancing model generalization, we introduce an end-to-end deep neural network, CM-YOLOv5, specifically designed for chip detection. We incorporate a novel bottleneck layer, MA-CSP, in conjunction with Multi-Head Self-Attention mechanism (MHSA). Additionally, we propose a class-balanced loss function (CB-BCE Loss) to tackle the issue of uneven distribution of defective samples in the Micro LED dataset. To further enhance convergence speed and detection precision, we introduce the SIoU Loss combined with Meta-AconC. Our experimental results, conducted on the Micro LED dataset, demonstrate notable improvements with CM-YOLOv5 over the basic YOLOv5 algorithm. Specifically, CM-YOLOv5 exhibits a 3.8 % increase in mean average precision and a 3.7 % improvement in precision, surpassing current mainstream object detection algorithms, including YOLOR, YOLOX, and YOLOv6, etc., in terms of general evaluation metrics. Finally, upon deploying our proposed algorithm on the edge device NVIDIA Jetson Xavier NX, CM-YOLOv5 demonstrates commendable speed and detection performance in embedded scenarios.</description><subject>Class imbalance</subject><subject>Deep convolutional neural network</subject><subject>Model deployment</subject><subject>Multi-head self-attention</subject><issn>1051-2004</issn><issn>1095-4333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxAezyAy7jR5xErFApD6kVG1hbjj1WXdqksg0Vf49LWbO6c0e6ozuHkBsGUwZM3a6nLu2mHLgsXspGnpAJg66mUghxephrRjmAPCcXKa0BoJFcTchyGWwcq8X8oXLo0eYiuUgYh2of8qpKuPHU5IzD726LdmWGkLa0NwldNeBnNJsieT_Gjyty5s0m4fWfXpL3x_nb7JkuXp9eZvcLarnsMmUd2L7pnapV7ZnoXdt2HXDRNN4gL94IazyXrURXS258XwtouFItY8q0VlwSdrxbuqcU0etdDFsTvzUDfeCh17rw0Ace-sijZO6OGSzFvgJGnWzAwaILsTys3Rj-Sf8A5T5okQ</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Zhong, Zebang</creator><creator>Li, Cheng</creator><creator>Chen, Meiyun</creator><creator>Wu, Heng</creator><creator>Kiyoshi, Takamasu</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0006-8922-7739</orcidid></search><sort><creationdate>202406</creationdate><title>Micro LED defect detection with self-attention mechanism-based neural network</title><author>Zhong, Zebang ; Li, Cheng ; Chen, Meiyun ; Wu, Heng ; Kiyoshi, Takamasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-190cb7bd6565f13bd889902377fae23bda3caf2484ed542afb53072668116a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Class imbalance</topic><topic>Deep convolutional neural network</topic><topic>Model deployment</topic><topic>Multi-head self-attention</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Zebang</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Chen, Meiyun</creatorcontrib><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Kiyoshi, Takamasu</creatorcontrib><collection>CrossRef</collection><jtitle>Digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Zebang</au><au>Li, Cheng</au><au>Chen, Meiyun</au><au>Wu, Heng</au><au>Kiyoshi, Takamasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro LED defect detection with self-attention mechanism-based neural network</atitle><jtitle>Digital signal processing</jtitle><date>2024-06</date><risdate>2024</risdate><volume>149</volume><spage>104474</spage><pages>104474-</pages><artnum>104474</artnum><issn>1051-2004</issn><eissn>1095-4333</eissn><abstract>We propose a method utilizing a YOLO detector for the precise localization of defective chips and the identification of defect types within multi-scale multi-target images. To address the challenge of optimizing training costs and enhancing model generalization, we introduce an end-to-end deep neural network, CM-YOLOv5, specifically designed for chip detection. We incorporate a novel bottleneck layer, MA-CSP, in conjunction with Multi-Head Self-Attention mechanism (MHSA). Additionally, we propose a class-balanced loss function (CB-BCE Loss) to tackle the issue of uneven distribution of defective samples in the Micro LED dataset. To further enhance convergence speed and detection precision, we introduce the SIoU Loss combined with Meta-AconC. Our experimental results, conducted on the Micro LED dataset, demonstrate notable improvements with CM-YOLOv5 over the basic YOLOv5 algorithm. Specifically, CM-YOLOv5 exhibits a 3.8 % increase in mean average precision and a 3.7 % improvement in precision, surpassing current mainstream object detection algorithms, including YOLOR, YOLOX, and YOLOv6, etc., in terms of general evaluation metrics. Finally, upon deploying our proposed algorithm on the edge device NVIDIA Jetson Xavier NX, CM-YOLOv5 demonstrates commendable speed and detection performance in embedded scenarios.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.dsp.2024.104474</doi><orcidid>https://orcid.org/0009-0006-8922-7739</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1051-2004 |
ispartof | Digital signal processing, 2024-06, Vol.149, p.104474, Article 104474 |
issn | 1051-2004 1095-4333 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_dsp_2024_104474 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Class imbalance Deep convolutional neural network Model deployment Multi-head self-attention |
title | Micro LED defect detection with self-attention mechanism-based neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro%20LED%20defect%20detection%20with%20self-attention%20mechanism-based%20neural%20network&rft.jtitle=Digital%20signal%20processing&rft.au=Zhong,%20Zebang&rft.date=2024-06&rft.volume=149&rft.spage=104474&rft.pages=104474-&rft.artnum=104474&rft.issn=1051-2004&rft.eissn=1095-4333&rft_id=info:doi/10.1016/j.dsp.2024.104474&rft_dat=%3Celsevier_cross%3ES105120042400099X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-190cb7bd6565f13bd889902377fae23bda3caf2484ed542afb53072668116a8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |