Loading…

Micro LED defect detection with self-attention mechanism-based neural network

We propose a method utilizing a YOLO detector for the precise localization of defective chips and the identification of defect types within multi-scale multi-target images. To address the challenge of optimizing training costs and enhancing model generalization, we introduce an end-to-end deep neura...

Full description

Saved in:
Bibliographic Details
Published in:Digital signal processing 2024-06, Vol.149, p.104474, Article 104474
Main Authors: Zhong, Zebang, Li, Cheng, Chen, Meiyun, Wu, Heng, Kiyoshi, Takamasu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c249t-190cb7bd6565f13bd889902377fae23bda3caf2484ed542afb53072668116a8c3
container_end_page
container_issue
container_start_page 104474
container_title Digital signal processing
container_volume 149
creator Zhong, Zebang
Li, Cheng
Chen, Meiyun
Wu, Heng
Kiyoshi, Takamasu
description We propose a method utilizing a YOLO detector for the precise localization of defective chips and the identification of defect types within multi-scale multi-target images. To address the challenge of optimizing training costs and enhancing model generalization, we introduce an end-to-end deep neural network, CM-YOLOv5, specifically designed for chip detection. We incorporate a novel bottleneck layer, MA-CSP, in conjunction with Multi-Head Self-Attention mechanism (MHSA). Additionally, we propose a class-balanced loss function (CB-BCE Loss) to tackle the issue of uneven distribution of defective samples in the Micro LED dataset. To further enhance convergence speed and detection precision, we introduce the SIoU Loss combined with Meta-AconC. Our experimental results, conducted on the Micro LED dataset, demonstrate notable improvements with CM-YOLOv5 over the basic YOLOv5 algorithm. Specifically, CM-YOLOv5 exhibits a 3.8 % increase in mean average precision and a 3.7 % improvement in precision, surpassing current mainstream object detection algorithms, including YOLOR, YOLOX, and YOLOv6, etc., in terms of general evaluation metrics. Finally, upon deploying our proposed algorithm on the edge device NVIDIA Jetson Xavier NX, CM-YOLOv5 demonstrates commendable speed and detection performance in embedded scenarios.
doi_str_mv 10.1016/j.dsp.2024.104474
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_dsp_2024_104474</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S105120042400099X</els_id><sourcerecordid>S105120042400099X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-190cb7bd6565f13bd889902377fae23bda3caf2484ed542afb53072668116a8c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEuXxAezyAy7jR5xErFApD6kVG1hbjj1WXdqksg0Vf49LWbO6c0e6ozuHkBsGUwZM3a6nLu2mHLgsXspGnpAJg66mUghxephrRjmAPCcXKa0BoJFcTchyGWwcq8X8oXLo0eYiuUgYh2of8qpKuPHU5IzD726LdmWGkLa0NwldNeBnNJsieT_Gjyty5s0m4fWfXpL3x_nb7JkuXp9eZvcLarnsMmUd2L7pnapV7ZnoXdt2HXDRNN4gL94IazyXrURXS258XwtouFItY8q0VlwSdrxbuqcU0etdDFsTvzUDfeCh17rw0Ace-sijZO6OGSzFvgJGnWzAwaILsTys3Rj-Sf8A5T5okQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Micro LED defect detection with self-attention mechanism-based neural network</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Zhong, Zebang ; Li, Cheng ; Chen, Meiyun ; Wu, Heng ; Kiyoshi, Takamasu</creator><creatorcontrib>Zhong, Zebang ; Li, Cheng ; Chen, Meiyun ; Wu, Heng ; Kiyoshi, Takamasu</creatorcontrib><description>We propose a method utilizing a YOLO detector for the precise localization of defective chips and the identification of defect types within multi-scale multi-target images. To address the challenge of optimizing training costs and enhancing model generalization, we introduce an end-to-end deep neural network, CM-YOLOv5, specifically designed for chip detection. We incorporate a novel bottleneck layer, MA-CSP, in conjunction with Multi-Head Self-Attention mechanism (MHSA). Additionally, we propose a class-balanced loss function (CB-BCE Loss) to tackle the issue of uneven distribution of defective samples in the Micro LED dataset. To further enhance convergence speed and detection precision, we introduce the SIoU Loss combined with Meta-AconC. Our experimental results, conducted on the Micro LED dataset, demonstrate notable improvements with CM-YOLOv5 over the basic YOLOv5 algorithm. Specifically, CM-YOLOv5 exhibits a 3.8 % increase in mean average precision and a 3.7 % improvement in precision, surpassing current mainstream object detection algorithms, including YOLOR, YOLOX, and YOLOv6, etc., in terms of general evaluation metrics. Finally, upon deploying our proposed algorithm on the edge device NVIDIA Jetson Xavier NX, CM-YOLOv5 demonstrates commendable speed and detection performance in embedded scenarios.</description><identifier>ISSN: 1051-2004</identifier><identifier>EISSN: 1095-4333</identifier><identifier>DOI: 10.1016/j.dsp.2024.104474</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Class imbalance ; Deep convolutional neural network ; Model deployment ; Multi-head self-attention</subject><ispartof>Digital signal processing, 2024-06, Vol.149, p.104474, Article 104474</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c249t-190cb7bd6565f13bd889902377fae23bda3caf2484ed542afb53072668116a8c3</cites><orcidid>0009-0006-8922-7739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhong, Zebang</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Chen, Meiyun</creatorcontrib><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Kiyoshi, Takamasu</creatorcontrib><title>Micro LED defect detection with self-attention mechanism-based neural network</title><title>Digital signal processing</title><description>We propose a method utilizing a YOLO detector for the precise localization of defective chips and the identification of defect types within multi-scale multi-target images. To address the challenge of optimizing training costs and enhancing model generalization, we introduce an end-to-end deep neural network, CM-YOLOv5, specifically designed for chip detection. We incorporate a novel bottleneck layer, MA-CSP, in conjunction with Multi-Head Self-Attention mechanism (MHSA). Additionally, we propose a class-balanced loss function (CB-BCE Loss) to tackle the issue of uneven distribution of defective samples in the Micro LED dataset. To further enhance convergence speed and detection precision, we introduce the SIoU Loss combined with Meta-AconC. Our experimental results, conducted on the Micro LED dataset, demonstrate notable improvements with CM-YOLOv5 over the basic YOLOv5 algorithm. Specifically, CM-YOLOv5 exhibits a 3.8 % increase in mean average precision and a 3.7 % improvement in precision, surpassing current mainstream object detection algorithms, including YOLOR, YOLOX, and YOLOv6, etc., in terms of general evaluation metrics. Finally, upon deploying our proposed algorithm on the edge device NVIDIA Jetson Xavier NX, CM-YOLOv5 demonstrates commendable speed and detection performance in embedded scenarios.</description><subject>Class imbalance</subject><subject>Deep convolutional neural network</subject><subject>Model deployment</subject><subject>Multi-head self-attention</subject><issn>1051-2004</issn><issn>1095-4333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEuXxAezyAy7jR5xErFApD6kVG1hbjj1WXdqksg0Vf49LWbO6c0e6ozuHkBsGUwZM3a6nLu2mHLgsXspGnpAJg66mUghxephrRjmAPCcXKa0BoJFcTchyGWwcq8X8oXLo0eYiuUgYh2of8qpKuPHU5IzD726LdmWGkLa0NwldNeBnNJsieT_Gjyty5s0m4fWfXpL3x_nb7JkuXp9eZvcLarnsMmUd2L7pnapV7ZnoXdt2HXDRNN4gL94IazyXrURXS258XwtouFItY8q0VlwSdrxbuqcU0etdDFsTvzUDfeCh17rw0Ace-sijZO6OGSzFvgJGnWzAwaILsTys3Rj-Sf8A5T5okQ</recordid><startdate>202406</startdate><enddate>202406</enddate><creator>Zhong, Zebang</creator><creator>Li, Cheng</creator><creator>Chen, Meiyun</creator><creator>Wu, Heng</creator><creator>Kiyoshi, Takamasu</creator><general>Elsevier Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0006-8922-7739</orcidid></search><sort><creationdate>202406</creationdate><title>Micro LED defect detection with self-attention mechanism-based neural network</title><author>Zhong, Zebang ; Li, Cheng ; Chen, Meiyun ; Wu, Heng ; Kiyoshi, Takamasu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-190cb7bd6565f13bd889902377fae23bda3caf2484ed542afb53072668116a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Class imbalance</topic><topic>Deep convolutional neural network</topic><topic>Model deployment</topic><topic>Multi-head self-attention</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhong, Zebang</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Chen, Meiyun</creatorcontrib><creatorcontrib>Wu, Heng</creatorcontrib><creatorcontrib>Kiyoshi, Takamasu</creatorcontrib><collection>CrossRef</collection><jtitle>Digital signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhong, Zebang</au><au>Li, Cheng</au><au>Chen, Meiyun</au><au>Wu, Heng</au><au>Kiyoshi, Takamasu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro LED defect detection with self-attention mechanism-based neural network</atitle><jtitle>Digital signal processing</jtitle><date>2024-06</date><risdate>2024</risdate><volume>149</volume><spage>104474</spage><pages>104474-</pages><artnum>104474</artnum><issn>1051-2004</issn><eissn>1095-4333</eissn><abstract>We propose a method utilizing a YOLO detector for the precise localization of defective chips and the identification of defect types within multi-scale multi-target images. To address the challenge of optimizing training costs and enhancing model generalization, we introduce an end-to-end deep neural network, CM-YOLOv5, specifically designed for chip detection. We incorporate a novel bottleneck layer, MA-CSP, in conjunction with Multi-Head Self-Attention mechanism (MHSA). Additionally, we propose a class-balanced loss function (CB-BCE Loss) to tackle the issue of uneven distribution of defective samples in the Micro LED dataset. To further enhance convergence speed and detection precision, we introduce the SIoU Loss combined with Meta-AconC. Our experimental results, conducted on the Micro LED dataset, demonstrate notable improvements with CM-YOLOv5 over the basic YOLOv5 algorithm. Specifically, CM-YOLOv5 exhibits a 3.8 % increase in mean average precision and a 3.7 % improvement in precision, surpassing current mainstream object detection algorithms, including YOLOR, YOLOX, and YOLOv6, etc., in terms of general evaluation metrics. Finally, upon deploying our proposed algorithm on the edge device NVIDIA Jetson Xavier NX, CM-YOLOv5 demonstrates commendable speed and detection performance in embedded scenarios.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.dsp.2024.104474</doi><orcidid>https://orcid.org/0009-0006-8922-7739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1051-2004
ispartof Digital signal processing, 2024-06, Vol.149, p.104474, Article 104474
issn 1051-2004
1095-4333
language eng
recordid cdi_crossref_primary_10_1016_j_dsp_2024_104474
source ScienceDirect Freedom Collection 2022-2024
subjects Class imbalance
Deep convolutional neural network
Model deployment
Multi-head self-attention
title Micro LED defect detection with self-attention mechanism-based neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A05%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro%20LED%20defect%20detection%20with%20self-attention%20mechanism-based%20neural%20network&rft.jtitle=Digital%20signal%20processing&rft.au=Zhong,%20Zebang&rft.date=2024-06&rft.volume=149&rft.spage=104474&rft.pages=104474-&rft.artnum=104474&rft.issn=1051-2004&rft.eissn=1095-4333&rft_id=info:doi/10.1016/j.dsp.2024.104474&rft_dat=%3Celsevier_cross%3ES105120042400099X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c249t-190cb7bd6565f13bd889902377fae23bda3caf2484ed542afb53072668116a8c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true