Loading…

Characterization of miRNAs and their target genes in He-Ne laser pretreated wheat seedlings exposed to drought stress

Drought stress is considered a critical environmental factor that negatively affects wheat growth and development, which causes considerable losses in wheat yields worldwide. More recently, numerous microRNAs (miRNAs) have been found to be involved in wheat responses to drought stresses. However, th...

Full description

Saved in:
Bibliographic Details
Published in:Ecotoxicology and environmental safety 2018-11, Vol.164, p.611-617
Main Authors: Qiu, Zongbo, He, Yanyan, Zhang, Yimeng, Guo, Junli, Wang, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drought stress is considered a critical environmental factor that negatively affects wheat growth and development, which causes considerable losses in wheat yields worldwide. More recently, numerous microRNAs (miRNAs) have been found to be involved in wheat responses to drought stresses. However, there is little information regarding the effects of He-Ne laser irradiation on the expression traits of miRNAs and their targets in wheat seedlings exposed to drought stress. In the current study, therefore, a combination of physiological and molecular approaches was used to assess the effect of He-Ne laser irradiation on the expression of miRNAs and their targets in wheat seedlings exposed to drought stress. Our results demonstrated that drought stress significantly reduced plant height, root length, shoot and root fresh weight, relative water content, the expression level and activity of superoxide dismutase (SOD), enhanced malondialdehyde (MDA) concentration in the wheat seedlings. However, He-Ne laser irradiation significantly enhanced the activities of SOD, ascorbate peroxidase (APX), peroxidase (POD) and relative water content, and reduced MDA concentration of seedlings by regulating gene expression for SOD, POD, APX. In addition, in comparison with drought stress alone, miR160, miR164 and miR398 transcripts were down-regulated, and expression levels of its targets auxin response factor (ARF22), NAC domain transcription factor and Cu/Zn superoxide dismutases (CSD) were up-regulated in He-Ne laser irradiated seedlings exposed to drought stress. These results suggested that He-Ne laser irradiation could possible protection of drought stress, at least partially, by increasing the transcript levels and activities of SOD, POD and APX, and decreasing the transcript levels of miR160, miR164 and miR398. To the best of our knowledge, this is the first study to present biochemical and molecular evidence supporting the effect of He-Ne laser irradiation on the alleviation of drought stress in wheat seedlings mediated by miRNA expression. •Drought stress severely affected wheat morphological and physiological traits.•Transcript levels and activities of SOD, POD and APX were increased in L+D treatment.•Expression of six known miRNAs and their targets were carried out using RT-qPCR.•He-Ne laser irradiation could modulate the expression of six known miRNAs and their targets.
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2018.08.077