Loading…

Accumulation and translocation of phenanthrene, anthracene and pyrene in winter wheat affected by soil water content

Polycyclic aromatic hydrocarbons (PAHs) are universal organic pollutants in the agro ecosystems in China, therefore, it is important to understand the uptake and accumulation of PAHs in crops growing on PAHs contaminated soils for human health risk assessments. Water management is a common practice...

Full description

Saved in:
Bibliographic Details
Published in:Ecotoxicology and environmental safety 2019-11, Vol.183, p.109567, Article 109567
Main Authors: Wu, Fuyong, Tian, Kai, Wang, Jinfeng, Bao, Huanyu, Luo, Wanqing, Zhang, He, Hong, Huachang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Polycyclic aromatic hydrocarbons (PAHs) are universal organic pollutants in the agro ecosystems in China, therefore, it is important to understand the uptake and accumulation of PAHs in crops growing on PAHs contaminated soils for human health risk assessments. Water management is a common practice to maintain high grain yields during wheat production. However, the effects of soil water content on the accumulation and translocation of PAHs in wheat are still not clear. The main objectives of the present study were to investigate the effects of soil water content on the accumulation of three selected PAHs (Σ3PAHs, phenanthrene, anthracene and pyrene) in wheat during whole plant growth stage and on translocation or remobilization of Σ3PAHs from vegetative tissues to wheat grains. Winter wheat (Triticum aestivum cv. Xiaoyan22) were grown on Σ3PAHs spiked soils maintaining 80%, 60% or 40% water-holding capacity during the whole plant growth stage. Plant samplings were performed at jointing, anthesis or maturity stage, respectively. The present study showed that grain yield and biomass of the crop increased with soil water content increasing. Transpiration rate of wheat leaf under 80% and 60% water-holding capacity treatments was significantly (p 
ISSN:0147-6513
1090-2414
DOI:10.1016/j.ecoenv.2019.109567