Loading…
Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils
Restoring polluted sites by petroleum hydrocarbons is a challenge because of their complexity and persistence in the environment. The main objective of the present study was to investigate the performance of plant-actinobacteria system for the remediation of crude petroleum and pure-polycyclic aroma...
Saved in:
Published in: | Ecotoxicology and environmental safety 2019-11, Vol.184, p.109591, Article 109591 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Restoring polluted sites by petroleum hydrocarbons is a challenge because of their complexity and persistence in the environment. The main objective of the present study was to investigate the performance of plant-actinobacteria system for the remediation of crude petroleum and pure-polycyclic aromatic hydrocarbons (PAHs) contaminated soils. The endophytic strain Streptomyces sp. Hlh1 was tested for its ability to degrade model PAHs (phenanthrene, pyrene and anthracene) in liquid minimal medium. Streptomyces sp. Hlh1 demonstrated the ability to grow on PAHs as sole carbon and energy source, reaching hydrocarbons removal of 63%, 93% and 83% for phenanthrene, pyrene and anthracene, respectively. Maize plant was chosen to study the impact of Streptomyces sp. Hlh1 inoculation on the dissipation of contaminants and plant growth. Thus, maize seedlings grown in soils contaminated with crude petroleum and pure-PAHs were inoculated with Streptomyces sp. Hlh1. Results showed that the endophyte inoculation increased contaminants removal. Maximum hydrocarbons removal (70%) was achieved in inoculated and planted soil contaminated with crude oil, while 61%, 59%, and 46% of hydrocarbons dissipation were registered for phenanthrene, pyrene and anthracene, respectively. These degradations rates were significantly higher compared to non-inoculated systems in all the treatments evaluated. Further, it was revealed that hydrocarbons (C8–C30) were efficiently degraded in plant-Streptomyces Hlh1 system. Moreover, the inoculation with the actinobacteria resulted significant plant development and enhanced photosynthetic pigments compared to plants grown in the other experimental conditions. The present study provide evidence that the inoculation of maize plants with Streptomyces sp. Hlh1 play a remarkable role in the removal of petroleum hydrocarbons, enhancing plant development in contaminated soils.
[Display omitted]
•The endophytic Streptomyces sp. Hlh1 removed crude oil and pure-PAHs from planted soil.•Higher hydrocarbons dissipation was found in the maize plant-actinobacteria system.•Streptomyces sp. Hlh1 enhanced plant development on hydrocarbons contaminated soil. |
---|---|
ISSN: | 0147-6513 1090-2414 |
DOI: | 10.1016/j.ecoenv.2019.109591 |