Loading…

Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification

Despite billions of dollars spent yearly to fund higher education for low-income youth, no government agency tracks how many low-income young people attend college by state. Whereas proxy measures like Pell grant receipt address the number of already enrolled low-income students, direct estimates fr...

Full description

Saved in:
Bibliographic Details
Published in:Economics of education review 2024-04, Vol.99, p.102508, Article 102508
Main Authors: Skinner, Benjamin T., Doyle, William R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c321t-a40b7a3a47844168a760dc0b1464192021ba675f6696306111b291e694720fd43
container_end_page
container_issue
container_start_page 102508
container_title Economics of education review
container_volume 99
creator Skinner, Benjamin T.
Doyle, William R.
description Despite billions of dollars spent yearly to fund higher education for low-income youth, no government agency tracks how many low-income young people attend college by state. Whereas proxy measures like Pell grant receipt address the number of already enrolled low-income students, direct estimates from U.S. Census surveys likely overestimate low-income youth enrollment due to their design. Using Bayesian multilevel regression with poststratification (MRP) to estimate postsecondary attendance rates by family income in each of the 50 states and the District of Columbia, we find substantial variation in attendance rates between income groups across the country.
doi_str_mv 10.1016/j.econedurev.2024.102508
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_econedurev_2024_102508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272775724000025</els_id><sourcerecordid>S0272775724000025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-a40b7a3a47844168a760dc0b1464192021ba675f6696306111b291e694720fd43</originalsourceid><addsrcrecordid>eNqFkNtKAzEQhoMoWKvvkBfYmmSzye6lFg-FgoL2OmST2TZlDyVJK73w3c2ygpfezD8MzMfMhxCmZEEJFff7BZihB3v0cFowwngas4KUF2hGS5lnMi_ZJZoRJlkmZSGv0U0Ie0JIUZJ8hr7fPVhnouu3-DCEGEaa1f6MdYyQut4Ars-40Z1rz9j1ZuggBY47wJveRbD4I-oIAR_DCOmObXQtnKDFHrYeQnBDj79c3E386HV0jTOpDv0tump0G-DuN-do8_z0uXzN1m8vq-XDOjM5ozHTnNRS55rLknMqSi0FsYbUlAtOq_Q0rbWQRSNEJXIiKKU1qyiIiktGGsvzOSonrvFDCB4adfCuS18qStSoUe3Vn0Y1alSTxrT6OK1Cuu_kwKtgHCQr1nkwUdnB_Q_5AdXag4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification</title><source>ScienceDirect Freedom Collection</source><creator>Skinner, Benjamin T. ; Doyle, William R.</creator><creatorcontrib>Skinner, Benjamin T. ; Doyle, William R.</creatorcontrib><description>Despite billions of dollars spent yearly to fund higher education for low-income youth, no government agency tracks how many low-income young people attend college by state. Whereas proxy measures like Pell grant receipt address the number of already enrolled low-income students, direct estimates from U.S. Census surveys likely overestimate low-income youth enrollment due to their design. Using Bayesian multilevel regression with poststratification (MRP) to estimate postsecondary attendance rates by family income in each of the 50 states and the District of Columbia, we find substantial variation in attendance rates between income groups across the country.</description><identifier>ISSN: 0272-7757</identifier><identifier>EISSN: 1873-7382</identifier><identifier>DOI: 10.1016/j.econedurev.2024.102508</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>College access ; Low income ; MRP ; Multilevel regression with poststratification</subject><ispartof>Economics of education review, 2024-04, Vol.99, p.102508, Article 102508</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-a40b7a3a47844168a760dc0b1464192021ba675f6696306111b291e694720fd43</cites><orcidid>0000-0002-0337-7415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Skinner, Benjamin T.</creatorcontrib><creatorcontrib>Doyle, William R.</creatorcontrib><title>Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification</title><title>Economics of education review</title><description>Despite billions of dollars spent yearly to fund higher education for low-income youth, no government agency tracks how many low-income young people attend college by state. Whereas proxy measures like Pell grant receipt address the number of already enrolled low-income students, direct estimates from U.S. Census surveys likely overestimate low-income youth enrollment due to their design. Using Bayesian multilevel regression with poststratification (MRP) to estimate postsecondary attendance rates by family income in each of the 50 states and the District of Columbia, we find substantial variation in attendance rates between income groups across the country.</description><subject>College access</subject><subject>Low income</subject><subject>MRP</subject><subject>Multilevel regression with poststratification</subject><issn>0272-7757</issn><issn>1873-7382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkNtKAzEQhoMoWKvvkBfYmmSzye6lFg-FgoL2OmST2TZlDyVJK73w3c2ygpfezD8MzMfMhxCmZEEJFff7BZihB3v0cFowwngas4KUF2hGS5lnMi_ZJZoRJlkmZSGv0U0Ie0JIUZJ8hr7fPVhnouu3-DCEGEaa1f6MdYyQut4Ars-40Z1rz9j1ZuggBY47wJveRbD4I-oIAR_DCOmObXQtnKDFHrYeQnBDj79c3E386HV0jTOpDv0tump0G-DuN-do8_z0uXzN1m8vq-XDOjM5ozHTnNRS55rLknMqSi0FsYbUlAtOq_Q0rbWQRSNEJXIiKKU1qyiIiktGGsvzOSonrvFDCB4adfCuS18qStSoUe3Vn0Y1alSTxrT6OK1Cuu_kwKtgHCQr1nkwUdnB_Q_5AdXag4A</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Skinner, Benjamin T.</creator><creator>Doyle, William R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0337-7415</orcidid></search><sort><creationdate>20240401</creationdate><title>Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification</title><author>Skinner, Benjamin T. ; Doyle, William R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-a40b7a3a47844168a760dc0b1464192021ba675f6696306111b291e694720fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>College access</topic><topic>Low income</topic><topic>MRP</topic><topic>Multilevel regression with poststratification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skinner, Benjamin T.</creatorcontrib><creatorcontrib>Doyle, William R.</creatorcontrib><collection>CrossRef</collection><jtitle>Economics of education review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skinner, Benjamin T.</au><au>Doyle, William R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification</atitle><jtitle>Economics of education review</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>99</volume><spage>102508</spage><pages>102508-</pages><artnum>102508</artnum><issn>0272-7757</issn><eissn>1873-7382</eissn><abstract>Despite billions of dollars spent yearly to fund higher education for low-income youth, no government agency tracks how many low-income young people attend college by state. Whereas proxy measures like Pell grant receipt address the number of already enrolled low-income students, direct estimates from U.S. Census surveys likely overestimate low-income youth enrollment due to their design. Using Bayesian multilevel regression with poststratification (MRP) to estimate postsecondary attendance rates by family income in each of the 50 states and the District of Columbia, we find substantial variation in attendance rates between income groups across the country.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.econedurev.2024.102508</doi><orcidid>https://orcid.org/0000-0002-0337-7415</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0272-7757
ispartof Economics of education review, 2024-04, Vol.99, p.102508, Article 102508
issn 0272-7757
1873-7382
language eng
recordid cdi_crossref_primary_10_1016_j_econedurev_2024_102508
source ScienceDirect Freedom Collection
subjects College access
Low income
MRP
Multilevel regression with poststratification
title Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20postsecondary%20attendance%20by%20family%20income%20in%20the%20United%20States%20using%20multilevel%20regression%20with%20poststratification&rft.jtitle=Economics%20of%20education%20review&rft.au=Skinner,%20Benjamin%20T.&rft.date=2024-04-01&rft.volume=99&rft.spage=102508&rft.pages=102508-&rft.artnum=102508&rft.issn=0272-7757&rft.eissn=1873-7382&rft_id=info:doi/10.1016/j.econedurev.2024.102508&rft_dat=%3Celsevier_cross%3ES0272775724000025%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-a40b7a3a47844168a760dc0b1464192021ba675f6696306111b291e694720fd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true