Loading…
Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification
Despite billions of dollars spent yearly to fund higher education for low-income youth, no government agency tracks how many low-income young people attend college by state. Whereas proxy measures like Pell grant receipt address the number of already enrolled low-income students, direct estimates fr...
Saved in:
Published in: | Economics of education review 2024-04, Vol.99, p.102508, Article 102508 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-a40b7a3a47844168a760dc0b1464192021ba675f6696306111b291e694720fd43 |
container_end_page | |
container_issue | |
container_start_page | 102508 |
container_title | Economics of education review |
container_volume | 99 |
creator | Skinner, Benjamin T. Doyle, William R. |
description | Despite billions of dollars spent yearly to fund higher education for low-income youth, no government agency tracks how many low-income young people attend college by state. Whereas proxy measures like Pell grant receipt address the number of already enrolled low-income students, direct estimates from U.S. Census surveys likely overestimate low-income youth enrollment due to their design. Using Bayesian multilevel regression with poststratification (MRP) to estimate postsecondary attendance rates by family income in each of the 50 states and the District of Columbia, we find substantial variation in attendance rates between income groups across the country. |
doi_str_mv | 10.1016/j.econedurev.2024.102508 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_econedurev_2024_102508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0272775724000025</els_id><sourcerecordid>S0272775724000025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-a40b7a3a47844168a760dc0b1464192021ba675f6696306111b291e694720fd43</originalsourceid><addsrcrecordid>eNqFkNtKAzEQhoMoWKvvkBfYmmSzye6lFg-FgoL2OmST2TZlDyVJK73w3c2ygpfezD8MzMfMhxCmZEEJFff7BZihB3v0cFowwngas4KUF2hGS5lnMi_ZJZoRJlkmZSGv0U0Ie0JIUZJ8hr7fPVhnouu3-DCEGEaa1f6MdYyQut4Ars-40Z1rz9j1ZuggBY47wJveRbD4I-oIAR_DCOmObXQtnKDFHrYeQnBDj79c3E386HV0jTOpDv0tump0G-DuN-do8_z0uXzN1m8vq-XDOjM5ozHTnNRS55rLknMqSi0FsYbUlAtOq_Q0rbWQRSNEJXIiKKU1qyiIiktGGsvzOSonrvFDCB4adfCuS18qStSoUe3Vn0Y1alSTxrT6OK1Cuu_kwKtgHCQr1nkwUdnB_Q_5AdXag4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification</title><source>ScienceDirect Freedom Collection</source><creator>Skinner, Benjamin T. ; Doyle, William R.</creator><creatorcontrib>Skinner, Benjamin T. ; Doyle, William R.</creatorcontrib><description>Despite billions of dollars spent yearly to fund higher education for low-income youth, no government agency tracks how many low-income young people attend college by state. Whereas proxy measures like Pell grant receipt address the number of already enrolled low-income students, direct estimates from U.S. Census surveys likely overestimate low-income youth enrollment due to their design. Using Bayesian multilevel regression with poststratification (MRP) to estimate postsecondary attendance rates by family income in each of the 50 states and the District of Columbia, we find substantial variation in attendance rates between income groups across the country.</description><identifier>ISSN: 0272-7757</identifier><identifier>EISSN: 1873-7382</identifier><identifier>DOI: 10.1016/j.econedurev.2024.102508</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>College access ; Low income ; MRP ; Multilevel regression with poststratification</subject><ispartof>Economics of education review, 2024-04, Vol.99, p.102508, Article 102508</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-a40b7a3a47844168a760dc0b1464192021ba675f6696306111b291e694720fd43</cites><orcidid>0000-0002-0337-7415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Skinner, Benjamin T.</creatorcontrib><creatorcontrib>Doyle, William R.</creatorcontrib><title>Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification</title><title>Economics of education review</title><description>Despite billions of dollars spent yearly to fund higher education for low-income youth, no government agency tracks how many low-income young people attend college by state. Whereas proxy measures like Pell grant receipt address the number of already enrolled low-income students, direct estimates from U.S. Census surveys likely overestimate low-income youth enrollment due to their design. Using Bayesian multilevel regression with poststratification (MRP) to estimate postsecondary attendance rates by family income in each of the 50 states and the District of Columbia, we find substantial variation in attendance rates between income groups across the country.</description><subject>College access</subject><subject>Low income</subject><subject>MRP</subject><subject>Multilevel regression with poststratification</subject><issn>0272-7757</issn><issn>1873-7382</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkNtKAzEQhoMoWKvvkBfYmmSzye6lFg-FgoL2OmST2TZlDyVJK73w3c2ygpfezD8MzMfMhxCmZEEJFff7BZihB3v0cFowwngas4KUF2hGS5lnMi_ZJZoRJlkmZSGv0U0Ie0JIUZJ8hr7fPVhnouu3-DCEGEaa1f6MdYyQut4Ars-40Z1rz9j1ZuggBY47wJveRbD4I-oIAR_DCOmObXQtnKDFHrYeQnBDj79c3E386HV0jTOpDv0tump0G-DuN-do8_z0uXzN1m8vq-XDOjM5ozHTnNRS55rLknMqSi0FsYbUlAtOq_Q0rbWQRSNEJXIiKKU1qyiIiktGGsvzOSonrvFDCB4adfCuS18qStSoUe3Vn0Y1alSTxrT6OK1Cuu_kwKtgHCQr1nkwUdnB_Q_5AdXag4A</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Skinner, Benjamin T.</creator><creator>Doyle, William R.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0337-7415</orcidid></search><sort><creationdate>20240401</creationdate><title>Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification</title><author>Skinner, Benjamin T. ; Doyle, William R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-a40b7a3a47844168a760dc0b1464192021ba675f6696306111b291e694720fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>College access</topic><topic>Low income</topic><topic>MRP</topic><topic>Multilevel regression with poststratification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skinner, Benjamin T.</creatorcontrib><creatorcontrib>Doyle, William R.</creatorcontrib><collection>CrossRef</collection><jtitle>Economics of education review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skinner, Benjamin T.</au><au>Doyle, William R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification</atitle><jtitle>Economics of education review</jtitle><date>2024-04-01</date><risdate>2024</risdate><volume>99</volume><spage>102508</spage><pages>102508-</pages><artnum>102508</artnum><issn>0272-7757</issn><eissn>1873-7382</eissn><abstract>Despite billions of dollars spent yearly to fund higher education for low-income youth, no government agency tracks how many low-income young people attend college by state. Whereas proxy measures like Pell grant receipt address the number of already enrolled low-income students, direct estimates from U.S. Census surveys likely overestimate low-income youth enrollment due to their design. Using Bayesian multilevel regression with poststratification (MRP) to estimate postsecondary attendance rates by family income in each of the 50 states and the District of Columbia, we find substantial variation in attendance rates between income groups across the country.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.econedurev.2024.102508</doi><orcidid>https://orcid.org/0000-0002-0337-7415</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-7757 |
ispartof | Economics of education review, 2024-04, Vol.99, p.102508, Article 102508 |
issn | 0272-7757 1873-7382 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_econedurev_2024_102508 |
source | ScienceDirect Freedom Collection |
subjects | College access Low income MRP Multilevel regression with poststratification |
title | Predicting postsecondary attendance by family income in the United States using multilevel regression with poststratification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20postsecondary%20attendance%20by%20family%20income%20in%20the%20United%20States%20using%20multilevel%20regression%20with%20poststratification&rft.jtitle=Economics%20of%20education%20review&rft.au=Skinner,%20Benjamin%20T.&rft.date=2024-04-01&rft.volume=99&rft.spage=102508&rft.pages=102508-&rft.artnum=102508&rft.issn=0272-7757&rft.eissn=1873-7382&rft_id=info:doi/10.1016/j.econedurev.2024.102508&rft_dat=%3Celsevier_cross%3ES0272775724000025%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-a40b7a3a47844168a760dc0b1464192021ba675f6696306111b291e694720fd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |