Loading…

CO2 capture for refineries, a practical approach

This paper evaluates the opportunities and associated costs for post-combustion capture at a world-scale complex refinery. It is concluded that it is technically feasible to apply post-combustion capture at such a refinery. The CO2 source most suited for capture appears to be a combined stack, but t...

Full description

Saved in:
Bibliographic Details
Published in:Energy procedia 2009-02, Vol.1 (1), p.179-185
Main Authors: van Straelen, Jiri, Geuzebroek, Frank, Goodchild, Nicholas, Protopapas, Georgios, Mahony, Liam
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper evaluates the opportunities and associated costs for post-combustion capture at a world-scale complex refinery. It is concluded that it is technically feasible to apply post-combustion capture at such a refinery. The CO2 source most suited for capture appears to be a combined stack, but there are a number of other sources that may be targeted at comparable costs. In total these sources may form about 40% of the overall refinery emissions. Our evaluations show the costs of capture from such sources based on available amine technology will be about 3–4 times higher than the current carbon trading values. The capture of CO2 from a large amount of smaller CO2 sources will bring along even much higher costs. A high-level study of the CO2 emissions profile of a number of Shell refineries shows that, typically, up to 50% of the emitted CO2 may be captured at costs comparable to those found at the reference refinery. About 10–20% of concentrated CO2 associated with hydrogen manufacturing may be captured at lower costs. The remainder of emitted dilute CO2 will bring along significantly higher costs. Based on this study, it is concluded for the justification of the implementation of post-combustion capture at refineries, either a significant increase in carbon trading values, mandatory regulations, or a major technological break-through is required.
ISSN:1876-6102
1876-6102
DOI:10.1016/j.egypro.2009.01.026