Loading…
Proximal Support Vector Machine (PSVM) Based Imbalance Fault Diagnosis of Wind Turbine Using Generator Current Signals
This paper presents an intelligent diagnosis technique for wind turbine imbalance fault identification based on generator current signals. For this aim, Proximal Support Vector (PSVM), which is powerful algorithm for classification problems that needs small training time in solving nonlinear problem...
Saved in:
Published in: | Energy procedia 2016-12, Vol.90, p.593-603 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents an intelligent diagnosis technique for wind turbine imbalance fault identification based on generator current signals. For this aim, Proximal Support Vector (PSVM), which is powerful algorithm for classification problems that needs small training time in solving nonlinear problems and applicable to high dimension applications, is employed. The complete dynamics of a permanent magnet synchronous generator (PMSG) based wind-turbine (WTG) model are imitated in an amalgamated domain of Simulink, FAST and TurbSim under six distinct conditions, i.e., aerodynamic asymmetry, rotor furl imbalance, tail furl imbalance, blade imbalance, nacelle-yaw imbalance and normal operating scenarios. The simulation results in time domain of the PMSG stator current are decomposed into the Intrinsic Mode Functions (IMFs) using EMD method, which are utilized as input variable in PSVM. The analyzed results proclaim the effectiveness of the proposed approach to identify the healthy condition from imbalance faults in WTG. The presented work renders initial results that are helpful for online condition monitoring and health assessment of WTG. |
---|---|
ISSN: | 1876-6102 1876-6102 |
DOI: | 10.1016/j.egypro.2016.11.228 |