Loading…

Proximal Support Vector Machine (PSVM) Based Imbalance Fault Diagnosis of Wind Turbine Using Generator Current Signals

This paper presents an intelligent diagnosis technique for wind turbine imbalance fault identification based on generator current signals. For this aim, Proximal Support Vector (PSVM), which is powerful algorithm for classification problems that needs small training time in solving nonlinear problem...

Full description

Saved in:
Bibliographic Details
Published in:Energy procedia 2016-12, Vol.90, p.593-603
Main Authors: Malik, Hasmat, Mishra, Sukumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an intelligent diagnosis technique for wind turbine imbalance fault identification based on generator current signals. For this aim, Proximal Support Vector (PSVM), which is powerful algorithm for classification problems that needs small training time in solving nonlinear problems and applicable to high dimension applications, is employed. The complete dynamics of a permanent magnet synchronous generator (PMSG) based wind-turbine (WTG) model are imitated in an amalgamated domain of Simulink, FAST and TurbSim under six distinct conditions, i.e., aerodynamic asymmetry, rotor furl imbalance, tail furl imbalance, blade imbalance, nacelle-yaw imbalance and normal operating scenarios. The simulation results in time domain of the PMSG stator current are decomposed into the Intrinsic Mode Functions (IMFs) using EMD method, which are utilized as input variable in PSVM. The analyzed results proclaim the effectiveness of the proposed approach to identify the healthy condition from imbalance faults in WTG. The presented work renders initial results that are helpful for online condition monitoring and health assessment of WTG.
ISSN:1876-6102
1876-6102
DOI:10.1016/j.egypro.2016.11.228