Loading…

PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES

Saved in:
Bibliographic Details
Published in:Physica medica 2024-09, Vol.125, p.104019, Article 104019
Main Authors: Kaiser, L., Quach, S., Zounek, A.J., Zatcepin, A., Holzgreve, A., Kirchleitner, S., Ruf, V.C., Brendel, M., Thon, N., Herms, J., Riemenschneider, M., Stöcklein, S., Niyazi, M., Rupprecht, R., Tonn, J., Bartenstein, P., Ziegler, S.I., von Baumgarten, L., Albert, N.L.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 104019
container_title Physica medica
container_volume 125
creator Kaiser, L.
Quach, S.
Zounek, A.J.
Zatcepin, A.
Holzgreve, A.
Kirchleitner, S.
Ruf, V.C.
Brendel, M.
Thon, N.
Herms, J.
Riemenschneider, M.
Stöcklein, S.
Niyazi, M.
Rupprecht, R.
Tonn, J.
Bartenstein, P.
Ziegler, S.I.
von Baumgarten, L.
Albert, N.L.
description
doi_str_mv 10.1016/j.ejmp.2024.104019
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ejmp_2024_104019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1120179724008457</els_id><sourcerecordid>S1120179724008457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c969-cd9e573422dd840d9294e14882992e5d3b72abb631932be440abdc5f1b7a06383</originalsourceid><addsrcrecordid>eNp9kMtKxDAYhbNQcBx9AVd5gdYkvQbcxDbTCfRGmhl1FXrJQIvjDK0IvoWPbMu4dvXD4f8Ohw-AB4xsjLD_ONhmOJ5tgog7By7C9AqsMCbIwgENbsDtNA0IOYR43gr8lBXCNg5gxqKtyDlMOZO5yBPrmVU8htVO7sWepbCUPBaREkUON4WEOX9J32AsWJIXy1-SiiJjsGRK8FxVcFfNHVCyeI5FBDecqZ3kFeSvSrJIzcRGFhnMpIAsj2HJFRQZS3h1B64P9ftk7v_uGqgNV9HWSotERCy1WupTq-2o8QLHJaTrQhd1lFDXYDcMCaXEeJ3TBKRuGt_B1CGNcV1UN13rHXAT1Mh3QmcNyKW2HU_TNJqDPo_9sR6_NUZ60agHvWjUi0Z90ThDTxfIzMO-ejPqqe3NR2u6fjTtp-5O_X_4L1DVcV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES</title><source>ScienceDirect Journals</source><creator>Kaiser, L. ; Quach, S. ; Zounek, A.J. ; Zatcepin, A. ; Holzgreve, A. ; Kirchleitner, S. ; Ruf, V.C. ; Brendel, M. ; Thon, N. ; Herms, J. ; Riemenschneider, M. ; Stöcklein, S. ; Niyazi, M. ; Rupprecht, R. ; Tonn, J. ; Bartenstein, P. ; Ziegler, S.I. ; von Baumgarten, L. ; Albert, N.L.</creator><creatorcontrib>Kaiser, L. ; Quach, S. ; Zounek, A.J. ; Zatcepin, A. ; Holzgreve, A. ; Kirchleitner, S. ; Ruf, V.C. ; Brendel, M. ; Thon, N. ; Herms, J. ; Riemenschneider, M. ; Stöcklein, S. ; Niyazi, M. ; Rupprecht, R. ; Tonn, J. ; Bartenstein, P. ; Ziegler, S.I. ; von Baumgarten, L. ; Albert, N.L.</creatorcontrib><identifier>ISSN: 1120-1797</identifier><identifier>DOI: 10.1016/j.ejmp.2024.104019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Physica medica, 2024-09, Vol.125, p.104019, Article 104019</ispartof><rights>2024 Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kaiser, L.</creatorcontrib><creatorcontrib>Quach, S.</creatorcontrib><creatorcontrib>Zounek, A.J.</creatorcontrib><creatorcontrib>Zatcepin, A.</creatorcontrib><creatorcontrib>Holzgreve, A.</creatorcontrib><creatorcontrib>Kirchleitner, S.</creatorcontrib><creatorcontrib>Ruf, V.C.</creatorcontrib><creatorcontrib>Brendel, M.</creatorcontrib><creatorcontrib>Thon, N.</creatorcontrib><creatorcontrib>Herms, J.</creatorcontrib><creatorcontrib>Riemenschneider, M.</creatorcontrib><creatorcontrib>Stöcklein, S.</creatorcontrib><creatorcontrib>Niyazi, M.</creatorcontrib><creatorcontrib>Rupprecht, R.</creatorcontrib><creatorcontrib>Tonn, J.</creatorcontrib><creatorcontrib>Bartenstein, P.</creatorcontrib><creatorcontrib>Ziegler, S.I.</creatorcontrib><creatorcontrib>von Baumgarten, L.</creatorcontrib><creatorcontrib>Albert, N.L.</creatorcontrib><title>PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES</title><title>Physica medica</title><issn>1120-1797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAYhbNQcBx9AVd5gdYkvQbcxDbTCfRGmhl1FXrJQIvjDK0IvoWPbMu4dvXD4f8Ohw-AB4xsjLD_ONhmOJ5tgog7By7C9AqsMCbIwgENbsDtNA0IOYR43gr8lBXCNg5gxqKtyDlMOZO5yBPrmVU8htVO7sWepbCUPBaREkUON4WEOX9J32AsWJIXy1-SiiJjsGRK8FxVcFfNHVCyeI5FBDecqZ3kFeSvSrJIzcRGFhnMpIAsj2HJFRQZS3h1B64P9ftk7v_uGqgNV9HWSotERCy1WupTq-2o8QLHJaTrQhd1lFDXYDcMCaXEeJ3TBKRuGt_B1CGNcV1UN13rHXAT1Mh3QmcNyKW2HU_TNJqDPo_9sR6_NUZ60agHvWjUi0Z90ThDTxfIzMO-ejPqqe3NR2u6fjTtp-5O_X_4L1DVcV0</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Kaiser, L.</creator><creator>Quach, S.</creator><creator>Zounek, A.J.</creator><creator>Zatcepin, A.</creator><creator>Holzgreve, A.</creator><creator>Kirchleitner, S.</creator><creator>Ruf, V.C.</creator><creator>Brendel, M.</creator><creator>Thon, N.</creator><creator>Herms, J.</creator><creator>Riemenschneider, M.</creator><creator>Stöcklein, S.</creator><creator>Niyazi, M.</creator><creator>Rupprecht, R.</creator><creator>Tonn, J.</creator><creator>Bartenstein, P.</creator><creator>Ziegler, S.I.</creator><creator>von Baumgarten, L.</creator><creator>Albert, N.L.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202409</creationdate><title>PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES</title><author>Kaiser, L. ; Quach, S. ; Zounek, A.J. ; Zatcepin, A. ; Holzgreve, A. ; Kirchleitner, S. ; Ruf, V.C. ; Brendel, M. ; Thon, N. ; Herms, J. ; Riemenschneider, M. ; Stöcklein, S. ; Niyazi, M. ; Rupprecht, R. ; Tonn, J. ; Bartenstein, P. ; Ziegler, S.I. ; von Baumgarten, L. ; Albert, N.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c969-cd9e573422dd840d9294e14882992e5d3b72abb631932be440abdc5f1b7a06383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaiser, L.</creatorcontrib><creatorcontrib>Quach, S.</creatorcontrib><creatorcontrib>Zounek, A.J.</creatorcontrib><creatorcontrib>Zatcepin, A.</creatorcontrib><creatorcontrib>Holzgreve, A.</creatorcontrib><creatorcontrib>Kirchleitner, S.</creatorcontrib><creatorcontrib>Ruf, V.C.</creatorcontrib><creatorcontrib>Brendel, M.</creatorcontrib><creatorcontrib>Thon, N.</creatorcontrib><creatorcontrib>Herms, J.</creatorcontrib><creatorcontrib>Riemenschneider, M.</creatorcontrib><creatorcontrib>Stöcklein, S.</creatorcontrib><creatorcontrib>Niyazi, M.</creatorcontrib><creatorcontrib>Rupprecht, R.</creatorcontrib><creatorcontrib>Tonn, J.</creatorcontrib><creatorcontrib>Bartenstein, P.</creatorcontrib><creatorcontrib>Ziegler, S.I.</creatorcontrib><creatorcontrib>von Baumgarten, L.</creatorcontrib><creatorcontrib>Albert, N.L.</creatorcontrib><collection>CrossRef</collection><jtitle>Physica medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaiser, L.</au><au>Quach, S.</au><au>Zounek, A.J.</au><au>Zatcepin, A.</au><au>Holzgreve, A.</au><au>Kirchleitner, S.</au><au>Ruf, V.C.</au><au>Brendel, M.</au><au>Thon, N.</au><au>Herms, J.</au><au>Riemenschneider, M.</au><au>Stöcklein, S.</au><au>Niyazi, M.</au><au>Rupprecht, R.</au><au>Tonn, J.</au><au>Bartenstein, P.</au><au>Ziegler, S.I.</au><au>von Baumgarten, L.</au><au>Albert, N.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES</atitle><jtitle>Physica medica</jtitle><date>2024-09</date><risdate>2024</risdate><volume>125</volume><spage>104019</spage><pages>104019-</pages><artnum>104019</artnum><issn>1120-1797</issn><pub>Elsevier Ltd</pub><doi>10.1016/j.ejmp.2024.104019</doi></addata></record>
fulltext fulltext
identifier ISSN: 1120-1797
ispartof Physica medica, 2024-09, Vol.125, p.104019, Article 104019
issn 1120-1797
language eng
recordid cdi_crossref_primary_10_1016_j_ejmp_2024_104019
source ScienceDirect Journals
title PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PS01.17%20MACHINE%20LEARNING-BASED%20SURVIVAL%20PREDICTION%20FOR%20NEWLY%20DIAGNOSED%20GLIOMA%20PATIENTS%20USING%20RADIOMIC%20FEATURES%20EXTRACTED%20FROM%20MRI%20AND%20PET%20IMAGES&rft.jtitle=Physica%20medica&rft.au=Kaiser,%20L.&rft.date=2024-09&rft.volume=125&rft.spage=104019&rft.pages=104019-&rft.artnum=104019&rft.issn=1120-1797&rft_id=info:doi/10.1016/j.ejmp.2024.104019&rft_dat=%3Celsevier_cross%3ES1120179724008457%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c969-cd9e573422dd840d9294e14882992e5d3b72abb631932be440abdc5f1b7a06383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true