Loading…
PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES
Saved in:
Published in: | Physica medica 2024-09, Vol.125, p.104019, Article 104019 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 104019 |
container_title | Physica medica |
container_volume | 125 |
creator | Kaiser, L. Quach, S. Zounek, A.J. Zatcepin, A. Holzgreve, A. Kirchleitner, S. Ruf, V.C. Brendel, M. Thon, N. Herms, J. Riemenschneider, M. Stöcklein, S. Niyazi, M. Rupprecht, R. Tonn, J. Bartenstein, P. Ziegler, S.I. von Baumgarten, L. Albert, N.L. |
description | |
doi_str_mv | 10.1016/j.ejmp.2024.104019 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_ejmp_2024_104019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1120179724008457</els_id><sourcerecordid>S1120179724008457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c969-cd9e573422dd840d9294e14882992e5d3b72abb631932be440abdc5f1b7a06383</originalsourceid><addsrcrecordid>eNp9kMtKxDAYhbNQcBx9AVd5gdYkvQbcxDbTCfRGmhl1FXrJQIvjDK0IvoWPbMu4dvXD4f8Ohw-AB4xsjLD_ONhmOJ5tgog7By7C9AqsMCbIwgENbsDtNA0IOYR43gr8lBXCNg5gxqKtyDlMOZO5yBPrmVU8htVO7sWepbCUPBaREkUON4WEOX9J32AsWJIXy1-SiiJjsGRK8FxVcFfNHVCyeI5FBDecqZ3kFeSvSrJIzcRGFhnMpIAsj2HJFRQZS3h1B64P9ftk7v_uGqgNV9HWSotERCy1WupTq-2o8QLHJaTrQhd1lFDXYDcMCaXEeJ3TBKRuGt_B1CGNcV1UN13rHXAT1Mh3QmcNyKW2HU_TNJqDPo_9sR6_NUZ60agHvWjUi0Z90ThDTxfIzMO-ejPqqe3NR2u6fjTtp-5O_X_4L1DVcV0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES</title><source>ScienceDirect Journals</source><creator>Kaiser, L. ; Quach, S. ; Zounek, A.J. ; Zatcepin, A. ; Holzgreve, A. ; Kirchleitner, S. ; Ruf, V.C. ; Brendel, M. ; Thon, N. ; Herms, J. ; Riemenschneider, M. ; Stöcklein, S. ; Niyazi, M. ; Rupprecht, R. ; Tonn, J. ; Bartenstein, P. ; Ziegler, S.I. ; von Baumgarten, L. ; Albert, N.L.</creator><creatorcontrib>Kaiser, L. ; Quach, S. ; Zounek, A.J. ; Zatcepin, A. ; Holzgreve, A. ; Kirchleitner, S. ; Ruf, V.C. ; Brendel, M. ; Thon, N. ; Herms, J. ; Riemenschneider, M. ; Stöcklein, S. ; Niyazi, M. ; Rupprecht, R. ; Tonn, J. ; Bartenstein, P. ; Ziegler, S.I. ; von Baumgarten, L. ; Albert, N.L.</creatorcontrib><identifier>ISSN: 1120-1797</identifier><identifier>DOI: 10.1016/j.ejmp.2024.104019</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><ispartof>Physica medica, 2024-09, Vol.125, p.104019, Article 104019</ispartof><rights>2024 Associazione Italiana di Fisica Medica e Sanitaria. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Kaiser, L.</creatorcontrib><creatorcontrib>Quach, S.</creatorcontrib><creatorcontrib>Zounek, A.J.</creatorcontrib><creatorcontrib>Zatcepin, A.</creatorcontrib><creatorcontrib>Holzgreve, A.</creatorcontrib><creatorcontrib>Kirchleitner, S.</creatorcontrib><creatorcontrib>Ruf, V.C.</creatorcontrib><creatorcontrib>Brendel, M.</creatorcontrib><creatorcontrib>Thon, N.</creatorcontrib><creatorcontrib>Herms, J.</creatorcontrib><creatorcontrib>Riemenschneider, M.</creatorcontrib><creatorcontrib>Stöcklein, S.</creatorcontrib><creatorcontrib>Niyazi, M.</creatorcontrib><creatorcontrib>Rupprecht, R.</creatorcontrib><creatorcontrib>Tonn, J.</creatorcontrib><creatorcontrib>Bartenstein, P.</creatorcontrib><creatorcontrib>Ziegler, S.I.</creatorcontrib><creatorcontrib>von Baumgarten, L.</creatorcontrib><creatorcontrib>Albert, N.L.</creatorcontrib><title>PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES</title><title>Physica medica</title><issn>1120-1797</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKxDAYhbNQcBx9AVd5gdYkvQbcxDbTCfRGmhl1FXrJQIvjDK0IvoWPbMu4dvXD4f8Ohw-AB4xsjLD_ONhmOJ5tgog7By7C9AqsMCbIwgENbsDtNA0IOYR43gr8lBXCNg5gxqKtyDlMOZO5yBPrmVU8htVO7sWepbCUPBaREkUON4WEOX9J32AsWJIXy1-SiiJjsGRK8FxVcFfNHVCyeI5FBDecqZ3kFeSvSrJIzcRGFhnMpIAsj2HJFRQZS3h1B64P9ftk7v_uGqgNV9HWSotERCy1WupTq-2o8QLHJaTrQhd1lFDXYDcMCaXEeJ3TBKRuGt_B1CGNcV1UN13rHXAT1Mh3QmcNyKW2HU_TNJqDPo_9sR6_NUZ60agHvWjUi0Z90ThDTxfIzMO-ejPqqe3NR2u6fjTtp-5O_X_4L1DVcV0</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Kaiser, L.</creator><creator>Quach, S.</creator><creator>Zounek, A.J.</creator><creator>Zatcepin, A.</creator><creator>Holzgreve, A.</creator><creator>Kirchleitner, S.</creator><creator>Ruf, V.C.</creator><creator>Brendel, M.</creator><creator>Thon, N.</creator><creator>Herms, J.</creator><creator>Riemenschneider, M.</creator><creator>Stöcklein, S.</creator><creator>Niyazi, M.</creator><creator>Rupprecht, R.</creator><creator>Tonn, J.</creator><creator>Bartenstein, P.</creator><creator>Ziegler, S.I.</creator><creator>von Baumgarten, L.</creator><creator>Albert, N.L.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202409</creationdate><title>PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES</title><author>Kaiser, L. ; Quach, S. ; Zounek, A.J. ; Zatcepin, A. ; Holzgreve, A. ; Kirchleitner, S. ; Ruf, V.C. ; Brendel, M. ; Thon, N. ; Herms, J. ; Riemenschneider, M. ; Stöcklein, S. ; Niyazi, M. ; Rupprecht, R. ; Tonn, J. ; Bartenstein, P. ; Ziegler, S.I. ; von Baumgarten, L. ; Albert, N.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c969-cd9e573422dd840d9294e14882992e5d3b72abb631932be440abdc5f1b7a06383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaiser, L.</creatorcontrib><creatorcontrib>Quach, S.</creatorcontrib><creatorcontrib>Zounek, A.J.</creatorcontrib><creatorcontrib>Zatcepin, A.</creatorcontrib><creatorcontrib>Holzgreve, A.</creatorcontrib><creatorcontrib>Kirchleitner, S.</creatorcontrib><creatorcontrib>Ruf, V.C.</creatorcontrib><creatorcontrib>Brendel, M.</creatorcontrib><creatorcontrib>Thon, N.</creatorcontrib><creatorcontrib>Herms, J.</creatorcontrib><creatorcontrib>Riemenschneider, M.</creatorcontrib><creatorcontrib>Stöcklein, S.</creatorcontrib><creatorcontrib>Niyazi, M.</creatorcontrib><creatorcontrib>Rupprecht, R.</creatorcontrib><creatorcontrib>Tonn, J.</creatorcontrib><creatorcontrib>Bartenstein, P.</creatorcontrib><creatorcontrib>Ziegler, S.I.</creatorcontrib><creatorcontrib>von Baumgarten, L.</creatorcontrib><creatorcontrib>Albert, N.L.</creatorcontrib><collection>CrossRef</collection><jtitle>Physica medica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaiser, L.</au><au>Quach, S.</au><au>Zounek, A.J.</au><au>Zatcepin, A.</au><au>Holzgreve, A.</au><au>Kirchleitner, S.</au><au>Ruf, V.C.</au><au>Brendel, M.</au><au>Thon, N.</au><au>Herms, J.</au><au>Riemenschneider, M.</au><au>Stöcklein, S.</au><au>Niyazi, M.</au><au>Rupprecht, R.</au><au>Tonn, J.</au><au>Bartenstein, P.</au><au>Ziegler, S.I.</au><au>von Baumgarten, L.</au><au>Albert, N.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES</atitle><jtitle>Physica medica</jtitle><date>2024-09</date><risdate>2024</risdate><volume>125</volume><spage>104019</spage><pages>104019-</pages><artnum>104019</artnum><issn>1120-1797</issn><pub>Elsevier Ltd</pub><doi>10.1016/j.ejmp.2024.104019</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1120-1797 |
ispartof | Physica medica, 2024-09, Vol.125, p.104019, Article 104019 |
issn | 1120-1797 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_ejmp_2024_104019 |
source | ScienceDirect Journals |
title | PS01.17 MACHINE LEARNING-BASED SURVIVAL PREDICTION FOR NEWLY DIAGNOSED GLIOMA PATIENTS USING RADIOMIC FEATURES EXTRACTED FROM MRI AND PET IMAGES |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PS01.17%20MACHINE%20LEARNING-BASED%20SURVIVAL%20PREDICTION%20FOR%20NEWLY%20DIAGNOSED%20GLIOMA%20PATIENTS%20USING%20RADIOMIC%20FEATURES%20EXTRACTED%20FROM%20MRI%20AND%20PET%20IMAGES&rft.jtitle=Physica%20medica&rft.au=Kaiser,%20L.&rft.date=2024-09&rft.volume=125&rft.spage=104019&rft.pages=104019-&rft.artnum=104019&rft.issn=1120-1797&rft_id=info:doi/10.1016/j.ejmp.2024.104019&rft_dat=%3Celsevier_cross%3ES1120179724008457%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c969-cd9e573422dd840d9294e14882992e5d3b72abb631932be440abdc5f1b7a06383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |