Loading…

pH-responsive delivery of Griffithsin from electrospun fibers

[Display omitted] Human immunodeficiency virus (HIV-1) affects over 36 million people globally. Current prevention strategies utilize antiretrovirals that have demonstrated protection, but result in antiviral resistance, adverse toxicity, and require frequent administration. A novel biologic, griffi...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutics and biopharmaceutics 2019-05, Vol.138, p.64-74
Main Authors: Tyo, Kevin M., Duan, Jinghua, Kollipara, Pravallika, dela Cerna, Mark Vincent C., Lee, Donghan, Palmer, Kenneth E., Steinbach-Rankins, Jill M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] Human immunodeficiency virus (HIV-1) affects over 36 million people globally. Current prevention strategies utilize antiretrovirals that have demonstrated protection, but result in antiviral resistance, adverse toxicity, and require frequent administration. A novel biologic, griffithsin (GRFT), has demonstrated outstanding safety and efficacy against laboratory and primary HIV isolates and against intravaginal murine herpes simplex virus 2 (HSV-2) challenge, making it a promising microbicide candidate. However, transient activity and instability remain concerns surrounding biologic delivery, particularly in the harsh environment of the female reproductive tract (FRT). Recently, electrospun fibers (EFs) have demonstrated promise for intravaginal delivery, with the potential to conserve active agent until release is needed. The goal of this study was to fabricate and characterize pH-responsive fibers comprised of poly(lactic-co-glycolic acid) (PLGA) or methoxypolyethylene glycol-b-PLGA (mPEG-PLGA) with varying ratios of poly(n-butyl acrylate-co-acrylic acid) (PBA-co-PAA), to selectively release GRFT under pH-conditions that mimic semen introduction. Fibers comprised of mPEG-PLGA:PBA-co-PAA (90:10 w/w) demonstrated high GRFT loading that was maintained within simulated vaginal fluid (SVF), and pH-dependent release upon exposure to buffered and SVF:simulated semen solutions. Moreover, GRFT fibers demonstrated potent in vitro efficacy against HIV-1 and safety in vaginal epithelial cells, suggesting their future potential for efficacious biologic delivery to the FRT.
ISSN:0939-6411
1873-3441
DOI:10.1016/j.ejpb.2018.04.013