Loading…

Adenosine A1 receptors modulate the anxiolytic-like effect of ethanol in the elevated plus-maze in mice

The anxiolytic property of ethanol is generally accepted to be an important motivational factor for its consumption and the development of alcohol dependence. Recent studies suggest that adenosine receptors mediate important actions of ethanol, such as motor incoordination and hypnotic effects. In a...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmacology 2004-09, Vol.499 (1-2), p.147-154
Main Authors: PREDIGER, Rui D. S, BATISTA, Luciano C, TAKAHASHI, Reinaldo N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The anxiolytic property of ethanol is generally accepted to be an important motivational factor for its consumption and the development of alcohol dependence. Recent studies suggest that adenosine receptors mediate important actions of ethanol, such as motor incoordination and hypnotic effects. In addition, several lines of evidence support the involvement of adenosine in anxiety. The aim of the present study was to evaluate the role of adenosine receptors in the anxiolytic-like effect of ethanol in mice. The effects of acute administration of the adenosine receptor antagonists caffeine (nonselective), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, adenosine A1 receptor antagonist) and 4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol (ZM241385, adenosine A(2A) receptor antagonist), together with the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA), and their interaction with ethanol in the elevated plus-maze test in mice were studied. The highest doses of caffeine (30.0 mg/kg, i.p.) and DPCPX (6.0 mg/kg, i.p.) produced an anxiogenic-like effect, while CCPA administration (0.25 mg/kg, i.p.) showed an anxiolytic-like activity. The prior administration of "non-anxiogenic" doses of caffeine (10.0 mg/kg, i.p.) and DPCPX (3.0 mg/kg, i.p.), but not ZM241385 (1.0 mg/kg, i.p.), significantly reduced the anxiolytic-like effect of ethanol (1.2 g/kg, i.p.). Moreover, anxiolytic-like response was observed by the co-administration of "non-anxiolytic" doses of CCPA (0.125 mg/kg) and ethanol (0.6 g/kg). These results reinforce the involvement of adenosine in anxiety and suggest that the activation of adenosine A1 receptors, but not adenosine A(2A) receptors, mediate the anxiolytic-like effect induced by ethanol in mice.
ISSN:0014-2999
1879-0712
DOI:10.1016/J.EJPHAR.2004.07.106