Loading…

Targeting of microglial KCa3.1 channels by TRAM-34 exacerbates hippocampal neurodegeneration and does not affect ictogenesis and epileptogenesis in chronic temporal lobe epilepsy models

Blockade of KCa3.1 channels has been suggested as a novel strategy to reduce microglia activation. The concept has been confirmed by neuroprotective effects in a rat brain ischemia-reperfusion model and reduced microglia activation surrounding glioblastomas. Cumulating evidence exists that microglia...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmacology 2014-10, Vol.740, p.72-80
Main Authors: Ongerth, Tanja, Russmann, Vera, Fischborn, Sarah, Boes, Katharina, Siegl, Claudia, Potschka, Heidrun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Blockade of KCa3.1 channels has been suggested as a novel strategy to reduce microglia activation. The concept has been confirmed by neuroprotective effects in a rat brain ischemia-reperfusion model and reduced microglia activation surrounding glioblastomas. Cumulating evidence exists that microglia activation significantly contributes to epileptogenesis as well as intrinsic severity in the chronic epileptic brain. Taken together these data raised the question whether the KCa3.1 channel blocker triarylmethane-34 (TRAM-34) might also exert beneficial effects in chronic epilepsy models. In a rat post-status epilepticus model TRAM-34 treatment following the insult did not result in neuroprotective effects. Whereas status epilepticus-associated neurodegeneration remained unaffected in the piriform cortex, loss of pyramidal cells in the hippocampal CA1 and CA3a region and of neuropeptide Y-positive interneurons in the hilus proved to be exacerbated by pharmacological KCa3.1 blockade. The development of spontaneous seizures and of behavioral and cognitive alterations was comparable in animals receiving TRAM-34 treatment or the respective vehicle. The kindling model of temporal lobe epilepsy with a massive stimulation paradigm with frequent seizure elicitation in fully kindled rats was used to assess a putative disease-modifying effect. However, sub-chronic TRAM-34 treatment failed to exert relevant effects on seizure generation and thresholds. In conclusion, the data obtained in two different chronic epilepsy models argue against using KCa3.1 blockers as disease-modifying or antiepileptogenic agents. Exacerbation of neuronal cell loss in TRAM-34 pre-treated epileptic animals rather indicates that translational development of the compound needs to carefully consider the pathophysiological mechanisms associated with different brain insults.
ISSN:0014-2999
1879-0712
DOI:10.1016/j.ejphar.2014.06.061