Loading…
Nanoparticles and phototherapy combination as therapeutic alternative in prostate cancer: A scoping review
Prostate cancer (CaP) is one of the most common types of cancers worldwide. Despite the existing surgical techniques, prostatectomy patients may experience tumor recurrence. In addition, castration-resistant cancers pose a challenge, especially given their lack of response to standard care. Thus, th...
Saved in:
Published in: | European journal of pharmacology 2023-01, Vol.939, p.175421, Article 175421 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Prostate cancer (CaP) is one of the most common types of cancers worldwide. Despite the existing surgical techniques, prostatectomy patients may experience tumor recurrence. In addition, castration-resistant cancers pose a challenge, especially given their lack of response to standard care. Thus, the development of more efficient therapies has become a field of great interest, and photothermal therapy (PTT) and photodynamic therapy (PDT) are promising alternatives, given their high capacity to cause cell injury and consequent tumor ablation. Phototherapy, along with chemotherapy, has also been shown to be more effective than pharmacotherapy alone. Free molecules used as photosensitizers are rapidly cleared from the body, do not accumulate in the tumor, and are primarily hydrophobic and require toxic solvents. Thus, the use of nanoparticles can be an effective strategy, given their ability to carry or bind to different molecules, protecting them from degradation and allowing their association with other surface ligands, which favors permeation and retention at the tumor site. Despite this, there is still a gap in the literature regarding the use of phototherapy in association with nanotechnology for the treatment of CaP. In this scoping review, it was found that most of the particles studied could act synergistically through PDT and PTT. In addition, fluorescent quenchers can act as diagnostic and therapeutic tools. However, future clinical studies should be performed to confirm the benefits and safety of the combination of nanoparticles and phototherapy for CaP. |
---|---|
ISSN: | 0014-2999 1879-0712 |
DOI: | 10.1016/j.ejphar.2022.175421 |