Loading…

Transition metal sulfide/oxide nanoflowers decorated on poly (aniline-2-sulfonic acid) modified polyacrylamide derived carbon cathode catalyst for bioenergy generation in microbial fuel cells

•A self-assembled nanoflower-like NiCo2S4/NiCo2O4@NSC catalyst is developed.•NiCo2S4 nanosheets facilitate nanoporous structure on NiCo2O4@NSC.•NiCo2S4/NiCo2O4@NSC demonstrates good catalytic activity, electrical conductivity, and stability.•NiCo2S4/NiCo2O4@NSC modified MFC generates 831.74 mW m−2 a...

Full description

Saved in:
Bibliographic Details
Published in:Electrochimica acta 2023-09, Vol.461, p.142697, Article 142697
Main Authors: Dhillon, Simran Kaur, Kundu, Patit Paban
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-d1f0eadae49ccf152c4d07e0c7c5fd290a6892c8fb7c7a3cf01b9a428a25c35e3
cites cdi_FETCH-LOGICAL-c315t-d1f0eadae49ccf152c4d07e0c7c5fd290a6892c8fb7c7a3cf01b9a428a25c35e3
container_end_page
container_issue
container_start_page 142697
container_title Electrochimica acta
container_volume 461
creator Dhillon, Simran Kaur
Kundu, Patit Paban
description •A self-assembled nanoflower-like NiCo2S4/NiCo2O4@NSC catalyst is developed.•NiCo2S4 nanosheets facilitate nanoporous structure on NiCo2O4@NSC.•NiCo2S4/NiCo2O4@NSC demonstrates good catalytic activity, electrical conductivity, and stability.•NiCo2S4/NiCo2O4@NSC modified MFC generates 831.74 mW m−2 at 3648.00 mA m−2.•Maximum power density of NiCo2S4/NiCo2O4@NSC is 1.249 times of NiCo2O4@NSC and 1.711 times of NC. Microbial fuel cells (MFCs) are promising carbon-free energy devices with the potential to harvest power and treat wastewater simultaneously, which is crucial to meet the emerging energy challenges. Despite the high theoretical power output, the performance of MFCs is dependent on the cathodic oxygen reduction reaction (ORR) to generate electricity. Herein, a hybrid nanostructure of nickel-cobalt sulfide (NiCo2S4) nanosheets over NiCo2O4 nanoflowers on in-situ nitrogen and sulfur-doped carbon (NSC) is prepared by direct pyrolysis. Deposition of NiCo2S4 nanosheets improves the effective contact with the electrolyte and increases the catalytic sites for ORR. NiCo2S4/NiCo2O4@NSC shows an oxygen reduction peak at 0.150 V, limiting current of -0.093 mA, close to -0.107 mA for Pt/C and generates optimal power density of 831.74 mW m−2 comparable to Pt/C (857.92 mW m−2) and higher than NiCo2O4@NSC (665.86 mW m−2), NSC (650.28 mW m−2) and NC (485.98 mW m−2) air cathodes. This could be attributed to the high degree of graphitization, appropriate N and S content, a synergistic effect between the metal species and the heteroatoms, and better catalytic surface area utilization. The results suggest that M-N-S-based carbons could be potential cathodes for microbial fuel cells and similar energy devices. [Display omitted]
doi_str_mv 10.1016/j.electacta.2023.142697
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_electacta_2023_142697</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0013468623008757</els_id><sourcerecordid>S0013468623008757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-d1f0eadae49ccf152c4d07e0c7c5fd290a6892c8fb7c7a3cf01b9a428a25c35e3</originalsourceid><addsrcrecordid>eNqFkM1OHDEQhOcAEgTyDPgIh1lsz9_OEaEAkZC4kLPV025Dr7w2sgeSebq8WjxZlGskyyW1qkqfqqoulNwoqfrr3YY84QzlbbTUzUa1uh-Ho-pUStXUbb_tT6ovOe-klEM_yNPq93OCkHnmGMSeZvAiv3vHlq7jr_KLACE6H39SysISxgQzWVHMb9Ev4hICew5U63qNxcAoANleiX207LhYVx9gWjzs1z5LiT_KGSFNpQVhfo3lXBT8kmfhYhITRwqUXhbxsir8hePCx5jixIXRvZMXSN7n8-rYgc_09VPPqh93355vH-rHp_vvtzePNTaqm2urnCSwQO2I6FSnsbVyIIkDds7qUUK_HTVu3TTgAA06qaYRWr0F3WHTUXNWDYfegpBzImfeEu8hLUZJs25vdubf9mbd3hy2L8mbQ5IK3gdTMhmZApLlVPzGRv5vxx_cs5rh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transition metal sulfide/oxide nanoflowers decorated on poly (aniline-2-sulfonic acid) modified polyacrylamide derived carbon cathode catalyst for bioenergy generation in microbial fuel cells</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dhillon, Simran Kaur ; Kundu, Patit Paban</creator><creatorcontrib>Dhillon, Simran Kaur ; Kundu, Patit Paban</creatorcontrib><description>•A self-assembled nanoflower-like NiCo2S4/NiCo2O4@NSC catalyst is developed.•NiCo2S4 nanosheets facilitate nanoporous structure on NiCo2O4@NSC.•NiCo2S4/NiCo2O4@NSC demonstrates good catalytic activity, electrical conductivity, and stability.•NiCo2S4/NiCo2O4@NSC modified MFC generates 831.74 mW m−2 at 3648.00 mA m−2.•Maximum power density of NiCo2S4/NiCo2O4@NSC is 1.249 times of NiCo2O4@NSC and 1.711 times of NC. Microbial fuel cells (MFCs) are promising carbon-free energy devices with the potential to harvest power and treat wastewater simultaneously, which is crucial to meet the emerging energy challenges. Despite the high theoretical power output, the performance of MFCs is dependent on the cathodic oxygen reduction reaction (ORR) to generate electricity. Herein, a hybrid nanostructure of nickel-cobalt sulfide (NiCo2S4) nanosheets over NiCo2O4 nanoflowers on in-situ nitrogen and sulfur-doped carbon (NSC) is prepared by direct pyrolysis. Deposition of NiCo2S4 nanosheets improves the effective contact with the electrolyte and increases the catalytic sites for ORR. NiCo2S4/NiCo2O4@NSC shows an oxygen reduction peak at 0.150 V, limiting current of -0.093 mA, close to -0.107 mA for Pt/C and generates optimal power density of 831.74 mW m−2 comparable to Pt/C (857.92 mW m−2) and higher than NiCo2O4@NSC (665.86 mW m−2), NSC (650.28 mW m−2) and NC (485.98 mW m−2) air cathodes. This could be attributed to the high degree of graphitization, appropriate N and S content, a synergistic effect between the metal species and the heteroatoms, and better catalytic surface area utilization. The results suggest that M-N-S-based carbons could be potential cathodes for microbial fuel cells and similar energy devices. [Display omitted]</description><identifier>ISSN: 0013-4686</identifier><identifier>DOI: 10.1016/j.electacta.2023.142697</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cathode catalyst ; Microbial fuel cell ; Oxygen reduction reaction ; Power generation ; Transition metal-sulfur-nitrogen-doped carbon</subject><ispartof>Electrochimica acta, 2023-09, Vol.461, p.142697, Article 142697</ispartof><rights>2023 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-d1f0eadae49ccf152c4d07e0c7c5fd290a6892c8fb7c7a3cf01b9a428a25c35e3</citedby><cites>FETCH-LOGICAL-c315t-d1f0eadae49ccf152c4d07e0c7c5fd290a6892c8fb7c7a3cf01b9a428a25c35e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dhillon, Simran Kaur</creatorcontrib><creatorcontrib>Kundu, Patit Paban</creatorcontrib><title>Transition metal sulfide/oxide nanoflowers decorated on poly (aniline-2-sulfonic acid) modified polyacrylamide derived carbon cathode catalyst for bioenergy generation in microbial fuel cells</title><title>Electrochimica acta</title><description>•A self-assembled nanoflower-like NiCo2S4/NiCo2O4@NSC catalyst is developed.•NiCo2S4 nanosheets facilitate nanoporous structure on NiCo2O4@NSC.•NiCo2S4/NiCo2O4@NSC demonstrates good catalytic activity, electrical conductivity, and stability.•NiCo2S4/NiCo2O4@NSC modified MFC generates 831.74 mW m−2 at 3648.00 mA m−2.•Maximum power density of NiCo2S4/NiCo2O4@NSC is 1.249 times of NiCo2O4@NSC and 1.711 times of NC. Microbial fuel cells (MFCs) are promising carbon-free energy devices with the potential to harvest power and treat wastewater simultaneously, which is crucial to meet the emerging energy challenges. Despite the high theoretical power output, the performance of MFCs is dependent on the cathodic oxygen reduction reaction (ORR) to generate electricity. Herein, a hybrid nanostructure of nickel-cobalt sulfide (NiCo2S4) nanosheets over NiCo2O4 nanoflowers on in-situ nitrogen and sulfur-doped carbon (NSC) is prepared by direct pyrolysis. Deposition of NiCo2S4 nanosheets improves the effective contact with the electrolyte and increases the catalytic sites for ORR. NiCo2S4/NiCo2O4@NSC shows an oxygen reduction peak at 0.150 V, limiting current of -0.093 mA, close to -0.107 mA for Pt/C and generates optimal power density of 831.74 mW m−2 comparable to Pt/C (857.92 mW m−2) and higher than NiCo2O4@NSC (665.86 mW m−2), NSC (650.28 mW m−2) and NC (485.98 mW m−2) air cathodes. This could be attributed to the high degree of graphitization, appropriate N and S content, a synergistic effect between the metal species and the heteroatoms, and better catalytic surface area utilization. The results suggest that M-N-S-based carbons could be potential cathodes for microbial fuel cells and similar energy devices. [Display omitted]</description><subject>Cathode catalyst</subject><subject>Microbial fuel cell</subject><subject>Oxygen reduction reaction</subject><subject>Power generation</subject><subject>Transition metal-sulfur-nitrogen-doped carbon</subject><issn>0013-4686</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OHDEQhOcAEgTyDPgIh1lsz9_OEaEAkZC4kLPV025Dr7w2sgeSebq8WjxZlGskyyW1qkqfqqoulNwoqfrr3YY84QzlbbTUzUa1uh-Ho-pUStXUbb_tT6ovOe-klEM_yNPq93OCkHnmGMSeZvAiv3vHlq7jr_KLACE6H39SysISxgQzWVHMb9Ev4hICew5U63qNxcAoANleiX207LhYVx9gWjzs1z5LiT_KGSFNpQVhfo3lXBT8kmfhYhITRwqUXhbxsir8hePCx5jixIXRvZMXSN7n8-rYgc_09VPPqh93355vH-rHp_vvtzePNTaqm2urnCSwQO2I6FSnsbVyIIkDds7qUUK_HTVu3TTgAA06qaYRWr0F3WHTUXNWDYfegpBzImfeEu8hLUZJs25vdubf9mbd3hy2L8mbQ5IK3gdTMhmZApLlVPzGRv5vxx_cs5rh</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Dhillon, Simran Kaur</creator><creator>Kundu, Patit Paban</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230901</creationdate><title>Transition metal sulfide/oxide nanoflowers decorated on poly (aniline-2-sulfonic acid) modified polyacrylamide derived carbon cathode catalyst for bioenergy generation in microbial fuel cells</title><author>Dhillon, Simran Kaur ; Kundu, Patit Paban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-d1f0eadae49ccf152c4d07e0c7c5fd290a6892c8fb7c7a3cf01b9a428a25c35e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cathode catalyst</topic><topic>Microbial fuel cell</topic><topic>Oxygen reduction reaction</topic><topic>Power generation</topic><topic>Transition metal-sulfur-nitrogen-doped carbon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhillon, Simran Kaur</creatorcontrib><creatorcontrib>Kundu, Patit Paban</creatorcontrib><collection>CrossRef</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhillon, Simran Kaur</au><au>Kundu, Patit Paban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transition metal sulfide/oxide nanoflowers decorated on poly (aniline-2-sulfonic acid) modified polyacrylamide derived carbon cathode catalyst for bioenergy generation in microbial fuel cells</atitle><jtitle>Electrochimica acta</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>461</volume><spage>142697</spage><pages>142697-</pages><artnum>142697</artnum><issn>0013-4686</issn><abstract>•A self-assembled nanoflower-like NiCo2S4/NiCo2O4@NSC catalyst is developed.•NiCo2S4 nanosheets facilitate nanoporous structure on NiCo2O4@NSC.•NiCo2S4/NiCo2O4@NSC demonstrates good catalytic activity, electrical conductivity, and stability.•NiCo2S4/NiCo2O4@NSC modified MFC generates 831.74 mW m−2 at 3648.00 mA m−2.•Maximum power density of NiCo2S4/NiCo2O4@NSC is 1.249 times of NiCo2O4@NSC and 1.711 times of NC. Microbial fuel cells (MFCs) are promising carbon-free energy devices with the potential to harvest power and treat wastewater simultaneously, which is crucial to meet the emerging energy challenges. Despite the high theoretical power output, the performance of MFCs is dependent on the cathodic oxygen reduction reaction (ORR) to generate electricity. Herein, a hybrid nanostructure of nickel-cobalt sulfide (NiCo2S4) nanosheets over NiCo2O4 nanoflowers on in-situ nitrogen and sulfur-doped carbon (NSC) is prepared by direct pyrolysis. Deposition of NiCo2S4 nanosheets improves the effective contact with the electrolyte and increases the catalytic sites for ORR. NiCo2S4/NiCo2O4@NSC shows an oxygen reduction peak at 0.150 V, limiting current of -0.093 mA, close to -0.107 mA for Pt/C and generates optimal power density of 831.74 mW m−2 comparable to Pt/C (857.92 mW m−2) and higher than NiCo2O4@NSC (665.86 mW m−2), NSC (650.28 mW m−2) and NC (485.98 mW m−2) air cathodes. This could be attributed to the high degree of graphitization, appropriate N and S content, a synergistic effect between the metal species and the heteroatoms, and better catalytic surface area utilization. The results suggest that M-N-S-based carbons could be potential cathodes for microbial fuel cells and similar energy devices. [Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2023.142697</doi></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2023-09, Vol.461, p.142697, Article 142697
issn 0013-4686
language eng
recordid cdi_crossref_primary_10_1016_j_electacta_2023_142697
source ScienceDirect Freedom Collection 2022-2024
subjects Cathode catalyst
Microbial fuel cell
Oxygen reduction reaction
Power generation
Transition metal-sulfur-nitrogen-doped carbon
title Transition metal sulfide/oxide nanoflowers decorated on poly (aniline-2-sulfonic acid) modified polyacrylamide derived carbon cathode catalyst for bioenergy generation in microbial fuel cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transition%20metal%20sulfide/oxide%20nanoflowers%20decorated%20on%20poly%20(aniline-2-sulfonic%20acid)%20modified%20polyacrylamide%20derived%20carbon%20cathode%20catalyst%20for%20bioenergy%20generation%20in%20microbial%20fuel%20cells&rft.jtitle=Electrochimica%20acta&rft.au=Dhillon,%20Simran%20Kaur&rft.date=2023-09-01&rft.volume=461&rft.spage=142697&rft.pages=142697-&rft.artnum=142697&rft.issn=0013-4686&rft_id=info:doi/10.1016/j.electacta.2023.142697&rft_dat=%3Celsevier_cross%3ES0013468623008757%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-d1f0eadae49ccf152c4d07e0c7c5fd290a6892c8fb7c7a3cf01b9a428a25c35e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true