Loading…
Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model
A theoretical analysis of the ejector refrigeration system based on the constant area ejector flow model is performed. Optimised results for R-123 are presented. It is determined that the variations in condenser and evaporator temperature have a greater effect on the optimum coefficient of performan...
Saved in:
Published in: | Energy conversion and management 2005-11, Vol.46 (18), p.3117-3135 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A theoretical analysis of the ejector refrigeration system based on the constant area ejector flow model is performed. Optimised results for R-123 are presented. It is determined that the variations in condenser and evaporator temperature have a greater effect on the optimum coefficient of performance (COP) than the variation in generator temperature. At the same operating temperatures of the ejector refrigeration system, the optimum COP and area ratio determined in this study using the constant area flow model are greater than the values given in the literature for the constant pressure flow model. For the same area ratio, the COP for the system with the constant pressure ejector is relatively higher than that with the constant area ejector. In this case, however, the condenser temperature should be lowered. In addition, the refrigeration systems have almost the same COP values at lower evaporator or higher condenser temperatures. |
---|---|
ISSN: | 0196-8904 1879-2227 |
DOI: | 10.1016/j.enconman.2005.01.010 |