Loading…

Flow field structure design modification with helical baffle for proton exchange membrane fuel cell

•A semicircular baffle flow field with helical structure is proposed.•Considering the anisotropic mass and heat transfer properties of the porous layers.•Considering the actual agglomerate structure of the cathode catalyst layer.•The optimized flow field increases the fuel cell’s net power density b...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management 2022-10, Vol.269, p.116175, Article 116175
Main Authors: Liu, Qingshan, Lan, Fengchong, Chen, Jiqing, Wang, Junfeng, Zeng, Changjing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3
cites cdi_FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3
container_end_page
container_issue
container_start_page 116175
container_title Energy conversion and management
container_volume 269
creator Liu, Qingshan
Lan, Fengchong
Chen, Jiqing
Wang, Junfeng
Zeng, Changjing
description •A semicircular baffle flow field with helical structure is proposed.•Considering the anisotropic mass and heat transfer properties of the porous layers.•Considering the actual agglomerate structure of the cathode catalyst layer.•The optimized flow field increases the fuel cell’s net power density by 11.42 %. To effectively improve the fuel cell (FC) mass transport capacity, a new flow field (FF) design with helical baffle at the cathode is proposed, which facilitates gas flow and mass transfer in both through- and in-plane directions. To fully understand the influence of various design parameters on the FC performance, a series of studies were carried out with a semicircular baffle as an example. The effect of the baffle structure on the complex heat and mass transport process is studied in detail to obtain the optimal baffle structure parameters. To simulate the complete transport process, a three-dimensional, multiphase, non-isothermal steady-state model was developed, embedding the anisotropic transport properties caused by the porous layer structures and the heterogeneous model of the actual agglomerate structure of the catalyst layer in the model. The results show that the helical baffles induce cross flow under the ribs while inducing forced convection, enhancing the oxygen supply in both directions. The FF structure with baffle height and pitch of 0.4 mm and 1.0 mm respectively has the maximum net power density. Taking the relative humidity = 50 % and 100 % as an example, the net power density is increased by 11.42 % and 5.72 % respectively compared with the original FF.
doi_str_mv 10.1016/j.enconman.2022.116175
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_enconman_2022_116175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890422009542</els_id><sourcerecordid>S0196890422009542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKd_QfIHWpO0Tds3ZTgnDHzR55Dc3mwZaTOSzum_t2P67NPhcu45HD5C7jnLOePyYZfjAGHo9ZALJkTOueR1dUFmvKnbTAhRX5IZ463MmpaV1-QmpR1jrKiYnBFY-nCk1qHvaBrjAcZDRNphcpuB9qFz1oEeXRjo0Y1bukU_3Z4aba1HakOk-xjGycYv2Ophg7TH3kQ9TOYBPQX0_pZcWe0T3v3qnHwsn98Xq2z99vK6eFpnIEoxZgAtq7DqeC2aqpKlNKKE2hrb1LqQDYIsjeQFN5ppBk0psRaMQVGgaHVnTDEn8twLMaQU0ap9dL2O34ozdUKlduoPlTqhUmdUU_DxHMRp3afDqBK46RM7FxFG1QX3X8UPVed3eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flow field structure design modification with helical baffle for proton exchange membrane fuel cell</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Qingshan ; Lan, Fengchong ; Chen, Jiqing ; Wang, Junfeng ; Zeng, Changjing</creator><creatorcontrib>Liu, Qingshan ; Lan, Fengchong ; Chen, Jiqing ; Wang, Junfeng ; Zeng, Changjing</creatorcontrib><description>•A semicircular baffle flow field with helical structure is proposed.•Considering the anisotropic mass and heat transfer properties of the porous layers.•Considering the actual agglomerate structure of the cathode catalyst layer.•The optimized flow field increases the fuel cell’s net power density by 11.42 %. To effectively improve the fuel cell (FC) mass transport capacity, a new flow field (FF) design with helical baffle at the cathode is proposed, which facilitates gas flow and mass transfer in both through- and in-plane directions. To fully understand the influence of various design parameters on the FC performance, a series of studies were carried out with a semicircular baffle as an example. The effect of the baffle structure on the complex heat and mass transport process is studied in detail to obtain the optimal baffle structure parameters. To simulate the complete transport process, a three-dimensional, multiphase, non-isothermal steady-state model was developed, embedding the anisotropic transport properties caused by the porous layer structures and the heterogeneous model of the actual agglomerate structure of the catalyst layer in the model. The results show that the helical baffles induce cross flow under the ribs while inducing forced convection, enhancing the oxygen supply in both directions. The FF structure with baffle height and pitch of 0.4 mm and 1.0 mm respectively has the maximum net power density. Taking the relative humidity = 50 % and 100 % as an example, the net power density is increased by 11.42 % and 5.72 % respectively compared with the original FF.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2022.116175</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anisotropic properties ; CL agglomerate model ; Helical semicircular baffle ; Mass and heat transport ; PEMFC</subject><ispartof>Energy conversion and management, 2022-10, Vol.269, p.116175, Article 116175</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3</citedby><cites>FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Qingshan</creatorcontrib><creatorcontrib>Lan, Fengchong</creatorcontrib><creatorcontrib>Chen, Jiqing</creatorcontrib><creatorcontrib>Wang, Junfeng</creatorcontrib><creatorcontrib>Zeng, Changjing</creatorcontrib><title>Flow field structure design modification with helical baffle for proton exchange membrane fuel cell</title><title>Energy conversion and management</title><description>•A semicircular baffle flow field with helical structure is proposed.•Considering the anisotropic mass and heat transfer properties of the porous layers.•Considering the actual agglomerate structure of the cathode catalyst layer.•The optimized flow field increases the fuel cell’s net power density by 11.42 %. To effectively improve the fuel cell (FC) mass transport capacity, a new flow field (FF) design with helical baffle at the cathode is proposed, which facilitates gas flow and mass transfer in both through- and in-plane directions. To fully understand the influence of various design parameters on the FC performance, a series of studies were carried out with a semicircular baffle as an example. The effect of the baffle structure on the complex heat and mass transport process is studied in detail to obtain the optimal baffle structure parameters. To simulate the complete transport process, a three-dimensional, multiphase, non-isothermal steady-state model was developed, embedding the anisotropic transport properties caused by the porous layer structures and the heterogeneous model of the actual agglomerate structure of the catalyst layer in the model. The results show that the helical baffles induce cross flow under the ribs while inducing forced convection, enhancing the oxygen supply in both directions. The FF structure with baffle height and pitch of 0.4 mm and 1.0 mm respectively has the maximum net power density. Taking the relative humidity = 50 % and 100 % as an example, the net power density is increased by 11.42 % and 5.72 % respectively compared with the original FF.</description><subject>Anisotropic properties</subject><subject>CL agglomerate model</subject><subject>Helical semicircular baffle</subject><subject>Mass and heat transport</subject><subject>PEMFC</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKd_QfIHWpO0Tds3ZTgnDHzR55Dc3mwZaTOSzum_t2P67NPhcu45HD5C7jnLOePyYZfjAGHo9ZALJkTOueR1dUFmvKnbTAhRX5IZ463MmpaV1-QmpR1jrKiYnBFY-nCk1qHvaBrjAcZDRNphcpuB9qFz1oEeXRjo0Y1bukU_3Z4aba1HakOk-xjGycYv2Ophg7TH3kQ9TOYBPQX0_pZcWe0T3v3qnHwsn98Xq2z99vK6eFpnIEoxZgAtq7DqeC2aqpKlNKKE2hrb1LqQDYIsjeQFN5ppBk0psRaMQVGgaHVnTDEn8twLMaQU0ap9dL2O34ozdUKlduoPlTqhUmdUU_DxHMRp3afDqBK46RM7FxFG1QX3X8UPVed3eg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Liu, Qingshan</creator><creator>Lan, Fengchong</creator><creator>Chen, Jiqing</creator><creator>Wang, Junfeng</creator><creator>Zeng, Changjing</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Flow field structure design modification with helical baffle for proton exchange membrane fuel cell</title><author>Liu, Qingshan ; Lan, Fengchong ; Chen, Jiqing ; Wang, Junfeng ; Zeng, Changjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropic properties</topic><topic>CL agglomerate model</topic><topic>Helical semicircular baffle</topic><topic>Mass and heat transport</topic><topic>PEMFC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qingshan</creatorcontrib><creatorcontrib>Lan, Fengchong</creatorcontrib><creatorcontrib>Chen, Jiqing</creatorcontrib><creatorcontrib>Wang, Junfeng</creatorcontrib><creatorcontrib>Zeng, Changjing</creatorcontrib><collection>CrossRef</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qingshan</au><au>Lan, Fengchong</au><au>Chen, Jiqing</au><au>Wang, Junfeng</au><au>Zeng, Changjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow field structure design modification with helical baffle for proton exchange membrane fuel cell</atitle><jtitle>Energy conversion and management</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>269</volume><spage>116175</spage><pages>116175-</pages><artnum>116175</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•A semicircular baffle flow field with helical structure is proposed.•Considering the anisotropic mass and heat transfer properties of the porous layers.•Considering the actual agglomerate structure of the cathode catalyst layer.•The optimized flow field increases the fuel cell’s net power density by 11.42 %. To effectively improve the fuel cell (FC) mass transport capacity, a new flow field (FF) design with helical baffle at the cathode is proposed, which facilitates gas flow and mass transfer in both through- and in-plane directions. To fully understand the influence of various design parameters on the FC performance, a series of studies were carried out with a semicircular baffle as an example. The effect of the baffle structure on the complex heat and mass transport process is studied in detail to obtain the optimal baffle structure parameters. To simulate the complete transport process, a three-dimensional, multiphase, non-isothermal steady-state model was developed, embedding the anisotropic transport properties caused by the porous layer structures and the heterogeneous model of the actual agglomerate structure of the catalyst layer in the model. The results show that the helical baffles induce cross flow under the ribs while inducing forced convection, enhancing the oxygen supply in both directions. The FF structure with baffle height and pitch of 0.4 mm and 1.0 mm respectively has the maximum net power density. Taking the relative humidity = 50 % and 100 % as an example, the net power density is increased by 11.42 % and 5.72 % respectively compared with the original FF.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2022.116175</doi></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2022-10, Vol.269, p.116175, Article 116175
issn 0196-8904
1879-2227
language eng
recordid cdi_crossref_primary_10_1016_j_enconman_2022_116175
source ScienceDirect Freedom Collection 2022-2024
subjects Anisotropic properties
CL agglomerate model
Helical semicircular baffle
Mass and heat transport
PEMFC
title Flow field structure design modification with helical baffle for proton exchange membrane fuel cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20field%20structure%20design%20modification%20with%20helical%20baffle%20for%20proton%20exchange%20membrane%20fuel%20cell&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Liu,%20Qingshan&rft.date=2022-10-01&rft.volume=269&rft.spage=116175&rft.pages=116175-&rft.artnum=116175&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2022.116175&rft_dat=%3Celsevier_cross%3ES0196890422009542%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true