Loading…
Flow field structure design modification with helical baffle for proton exchange membrane fuel cell
•A semicircular baffle flow field with helical structure is proposed.•Considering the anisotropic mass and heat transfer properties of the porous layers.•Considering the actual agglomerate structure of the cathode catalyst layer.•The optimized flow field increases the fuel cell’s net power density b...
Saved in:
Published in: | Energy conversion and management 2022-10, Vol.269, p.116175, Article 116175 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3 |
container_end_page | |
container_issue | |
container_start_page | 116175 |
container_title | Energy conversion and management |
container_volume | 269 |
creator | Liu, Qingshan Lan, Fengchong Chen, Jiqing Wang, Junfeng Zeng, Changjing |
description | •A semicircular baffle flow field with helical structure is proposed.•Considering the anisotropic mass and heat transfer properties of the porous layers.•Considering the actual agglomerate structure of the cathode catalyst layer.•The optimized flow field increases the fuel cell’s net power density by 11.42 %.
To effectively improve the fuel cell (FC) mass transport capacity, a new flow field (FF) design with helical baffle at the cathode is proposed, which facilitates gas flow and mass transfer in both through- and in-plane directions. To fully understand the influence of various design parameters on the FC performance, a series of studies were carried out with a semicircular baffle as an example. The effect of the baffle structure on the complex heat and mass transport process is studied in detail to obtain the optimal baffle structure parameters. To simulate the complete transport process, a three-dimensional, multiphase, non-isothermal steady-state model was developed, embedding the anisotropic transport properties caused by the porous layer structures and the heterogeneous model of the actual agglomerate structure of the catalyst layer in the model. The results show that the helical baffles induce cross flow under the ribs while inducing forced convection, enhancing the oxygen supply in both directions. The FF structure with baffle height and pitch of 0.4 mm and 1.0 mm respectively has the maximum net power density. Taking the relative humidity = 50 % and 100 % as an example, the net power density is increased by 11.42 % and 5.72 % respectively compared with the original FF. |
doi_str_mv | 10.1016/j.enconman.2022.116175 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_enconman_2022_116175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890422009542</els_id><sourcerecordid>S0196890422009542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3</originalsourceid><addsrcrecordid>eNqFkFFLwzAUhYMoOKd_QfIHWpO0Tds3ZTgnDHzR55Dc3mwZaTOSzum_t2P67NPhcu45HD5C7jnLOePyYZfjAGHo9ZALJkTOueR1dUFmvKnbTAhRX5IZ463MmpaV1-QmpR1jrKiYnBFY-nCk1qHvaBrjAcZDRNphcpuB9qFz1oEeXRjo0Y1bukU_3Z4aba1HakOk-xjGycYv2Ophg7TH3kQ9TOYBPQX0_pZcWe0T3v3qnHwsn98Xq2z99vK6eFpnIEoxZgAtq7DqeC2aqpKlNKKE2hrb1LqQDYIsjeQFN5ppBk0psRaMQVGgaHVnTDEn8twLMaQU0ap9dL2O34ozdUKlduoPlTqhUmdUU_DxHMRp3afDqBK46RM7FxFG1QX3X8UPVed3eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Flow field structure design modification with helical baffle for proton exchange membrane fuel cell</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Liu, Qingshan ; Lan, Fengchong ; Chen, Jiqing ; Wang, Junfeng ; Zeng, Changjing</creator><creatorcontrib>Liu, Qingshan ; Lan, Fengchong ; Chen, Jiqing ; Wang, Junfeng ; Zeng, Changjing</creatorcontrib><description>•A semicircular baffle flow field with helical structure is proposed.•Considering the anisotropic mass and heat transfer properties of the porous layers.•Considering the actual agglomerate structure of the cathode catalyst layer.•The optimized flow field increases the fuel cell’s net power density by 11.42 %.
To effectively improve the fuel cell (FC) mass transport capacity, a new flow field (FF) design with helical baffle at the cathode is proposed, which facilitates gas flow and mass transfer in both through- and in-plane directions. To fully understand the influence of various design parameters on the FC performance, a series of studies were carried out with a semicircular baffle as an example. The effect of the baffle structure on the complex heat and mass transport process is studied in detail to obtain the optimal baffle structure parameters. To simulate the complete transport process, a three-dimensional, multiphase, non-isothermal steady-state model was developed, embedding the anisotropic transport properties caused by the porous layer structures and the heterogeneous model of the actual agglomerate structure of the catalyst layer in the model. The results show that the helical baffles induce cross flow under the ribs while inducing forced convection, enhancing the oxygen supply in both directions. The FF structure with baffle height and pitch of 0.4 mm and 1.0 mm respectively has the maximum net power density. Taking the relative humidity = 50 % and 100 % as an example, the net power density is increased by 11.42 % and 5.72 % respectively compared with the original FF.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2022.116175</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Anisotropic properties ; CL agglomerate model ; Helical semicircular baffle ; Mass and heat transport ; PEMFC</subject><ispartof>Energy conversion and management, 2022-10, Vol.269, p.116175, Article 116175</ispartof><rights>2022 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3</citedby><cites>FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Qingshan</creatorcontrib><creatorcontrib>Lan, Fengchong</creatorcontrib><creatorcontrib>Chen, Jiqing</creatorcontrib><creatorcontrib>Wang, Junfeng</creatorcontrib><creatorcontrib>Zeng, Changjing</creatorcontrib><title>Flow field structure design modification with helical baffle for proton exchange membrane fuel cell</title><title>Energy conversion and management</title><description>•A semicircular baffle flow field with helical structure is proposed.•Considering the anisotropic mass and heat transfer properties of the porous layers.•Considering the actual agglomerate structure of the cathode catalyst layer.•The optimized flow field increases the fuel cell’s net power density by 11.42 %.
To effectively improve the fuel cell (FC) mass transport capacity, a new flow field (FF) design with helical baffle at the cathode is proposed, which facilitates gas flow and mass transfer in both through- and in-plane directions. To fully understand the influence of various design parameters on the FC performance, a series of studies were carried out with a semicircular baffle as an example. The effect of the baffle structure on the complex heat and mass transport process is studied in detail to obtain the optimal baffle structure parameters. To simulate the complete transport process, a three-dimensional, multiphase, non-isothermal steady-state model was developed, embedding the anisotropic transport properties caused by the porous layer structures and the heterogeneous model of the actual agglomerate structure of the catalyst layer in the model. The results show that the helical baffles induce cross flow under the ribs while inducing forced convection, enhancing the oxygen supply in both directions. The FF structure with baffle height and pitch of 0.4 mm and 1.0 mm respectively has the maximum net power density. Taking the relative humidity = 50 % and 100 % as an example, the net power density is increased by 11.42 % and 5.72 % respectively compared with the original FF.</description><subject>Anisotropic properties</subject><subject>CL agglomerate model</subject><subject>Helical semicircular baffle</subject><subject>Mass and heat transport</subject><subject>PEMFC</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkFFLwzAUhYMoOKd_QfIHWpO0Tds3ZTgnDHzR55Dc3mwZaTOSzum_t2P67NPhcu45HD5C7jnLOePyYZfjAGHo9ZALJkTOueR1dUFmvKnbTAhRX5IZ463MmpaV1-QmpR1jrKiYnBFY-nCk1qHvaBrjAcZDRNphcpuB9qFz1oEeXRjo0Y1bukU_3Z4aba1HakOk-xjGycYv2Ophg7TH3kQ9TOYBPQX0_pZcWe0T3v3qnHwsn98Xq2z99vK6eFpnIEoxZgAtq7DqeC2aqpKlNKKE2hrb1LqQDYIsjeQFN5ppBk0psRaMQVGgaHVnTDEn8twLMaQU0ap9dL2O34ozdUKlduoPlTqhUmdUU_DxHMRp3afDqBK46RM7FxFG1QX3X8UPVed3eg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Liu, Qingshan</creator><creator>Lan, Fengchong</creator><creator>Chen, Jiqing</creator><creator>Wang, Junfeng</creator><creator>Zeng, Changjing</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221001</creationdate><title>Flow field structure design modification with helical baffle for proton exchange membrane fuel cell</title><author>Liu, Qingshan ; Lan, Fengchong ; Chen, Jiqing ; Wang, Junfeng ; Zeng, Changjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anisotropic properties</topic><topic>CL agglomerate model</topic><topic>Helical semicircular baffle</topic><topic>Mass and heat transport</topic><topic>PEMFC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qingshan</creatorcontrib><creatorcontrib>Lan, Fengchong</creatorcontrib><creatorcontrib>Chen, Jiqing</creatorcontrib><creatorcontrib>Wang, Junfeng</creatorcontrib><creatorcontrib>Zeng, Changjing</creatorcontrib><collection>CrossRef</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qingshan</au><au>Lan, Fengchong</au><au>Chen, Jiqing</au><au>Wang, Junfeng</au><au>Zeng, Changjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow field structure design modification with helical baffle for proton exchange membrane fuel cell</atitle><jtitle>Energy conversion and management</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>269</volume><spage>116175</spage><pages>116175-</pages><artnum>116175</artnum><issn>0196-8904</issn><eissn>1879-2227</eissn><abstract>•A semicircular baffle flow field with helical structure is proposed.•Considering the anisotropic mass and heat transfer properties of the porous layers.•Considering the actual agglomerate structure of the cathode catalyst layer.•The optimized flow field increases the fuel cell’s net power density by 11.42 %.
To effectively improve the fuel cell (FC) mass transport capacity, a new flow field (FF) design with helical baffle at the cathode is proposed, which facilitates gas flow and mass transfer in both through- and in-plane directions. To fully understand the influence of various design parameters on the FC performance, a series of studies were carried out with a semicircular baffle as an example. The effect of the baffle structure on the complex heat and mass transport process is studied in detail to obtain the optimal baffle structure parameters. To simulate the complete transport process, a three-dimensional, multiphase, non-isothermal steady-state model was developed, embedding the anisotropic transport properties caused by the porous layer structures and the heterogeneous model of the actual agglomerate structure of the catalyst layer in the model. The results show that the helical baffles induce cross flow under the ribs while inducing forced convection, enhancing the oxygen supply in both directions. The FF structure with baffle height and pitch of 0.4 mm and 1.0 mm respectively has the maximum net power density. Taking the relative humidity = 50 % and 100 % as an example, the net power density is increased by 11.42 % and 5.72 % respectively compared with the original FF.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2022.116175</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-8904 |
ispartof | Energy conversion and management, 2022-10, Vol.269, p.116175, Article 116175 |
issn | 0196-8904 1879-2227 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_enconman_2022_116175 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Anisotropic properties CL agglomerate model Helical semicircular baffle Mass and heat transport PEMFC |
title | Flow field structure design modification with helical baffle for proton exchange membrane fuel cell |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A10%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20field%20structure%20design%20modification%20with%20helical%20baffle%20for%20proton%20exchange%20membrane%20fuel%20cell&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Liu,%20Qingshan&rft.date=2022-10-01&rft.volume=269&rft.spage=116175&rft.pages=116175-&rft.artnum=116175&rft.issn=0196-8904&rft.eissn=1879-2227&rft_id=info:doi/10.1016/j.enconman.2022.116175&rft_dat=%3Celsevier_cross%3ES0196890422009542%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c242t-cc905e5d172855646b24c7fbf87a368ec64b6131ba0a0c846e7200c33e29adbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |