Loading…

Modeling of a heat-integrated biomass downdraft gasifier: Estimating key model parameters using experimental data

[Display omitted] •Subset selection is used to aid parameter estimation in a downdraft gasifier model.•Model parameters were ranked and 27 out of 40 were tuned for reliable predictions.•Parameter estimates result in 50% reduction in objective function from 1565 to 785.•Diagnosis of 13 unestimated pa...

Full description

Saved in:
Bibliographic Details
Published in:Energy conversion and management 2025-02, Vol.325, p.119372, Article 119372
Main Authors: Haidar, Houda M., Butler, James W., Lotfi, Samira, Vo, Anh-Duong Dieu, Gogolek, Peter, McAuley, Kimberley
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1522-3200f0797ed754890e0ec74ef423398738ab8788d57d124ce63bcd439731e79f3
container_end_page
container_issue
container_start_page 119372
container_title Energy conversion and management
container_volume 325
creator Haidar, Houda M.
Butler, James W.
Lotfi, Samira
Vo, Anh-Duong Dieu
Gogolek, Peter
McAuley, Kimberley
description [Display omitted] •Subset selection is used to aid parameter estimation in a downdraft gasifier model.•Model parameters were ranked and 27 out of 40 were tuned for reliable predictions.•Parameter estimates result in 50% reduction in objective function from 1565 to 785.•Diagnosis of 13 unestimated parameters reveals correlation and low sensitivities.•Model is validated and used to study effects of bed height and producer-gas demand. Kinetic and transport parameters in a model of a heat-integrated biomass downdraft gasifier are poorly known and require estimation. The large number of parameters (40) arises from pyrolysis, combustion, and gasification reactions, as well as heat-transfer phenomena inside the gasifier and associated heat-integration system. Due to complexity of the model and the limited available data, only a subset of the parameters can be reliably estimated. A sensitivity-based approach is used to determine the appropriate number of parameters to estimate while preventing overfitting. It is hypothesized that estimating these important parameters will result in better model predictions. The 40 parameters are ranked from most-estimable to least-estimable based on sensitivity information and initial parameter uncertainties. A mean-squared-error criterion is then used to determine that 27 parameters should be estimated using data from 15 experimental runs, with the remaining 13 parameters fixed at their initial values. A diagnosis of the 13 low-ranked parameters reveals that 8 parameters are not estimated due to correlation with high-ranked parameters and that the remaining 5 parameters have little influence on model predictions. The model is validated using two runs not used for parameter tuning. The updated model is used to predict that a taller gasifier would not improve the quality of the producer gas. Simulations show that increasing the producer-gas demand by 50% results in a 15.2% decrease in H2/CO ratio, a 52.6% increase in tar content in the producer gas, and a 44% increase in electrical energy output.
doi_str_mv 10.1016/j.enconman.2024.119372
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_enconman_2024_119372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S019689042401313X</els_id><sourcerecordid>S019689042401313X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1522-3200f0797ed754890e0ec74ef423398738ab8788d57d124ce63bcd439731e79f3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRb0AiVL4BeQfSPAjiRNWoKo8pCI2sLYm9ri4NEmxzaN_T6LCmtUsZs7VnUPIBWc5Z7y63OTYm6HvoM8FE0XOeSOVOCIzxpsqqxtWnJDTGDeMMVmyakbeHweLW9-v6eAo0FeElPk-4TpAQktbP3QQI7XDV28DuETXEL3zGK7oMibfQZrYN9zTbgqiOwjQYcIQ6UecVvi9w-A77BNsqYUEZ-TYwTbi-e-ck5fb5fPiPls93T0sblaZ4aUQmRSMOaYahVaVxdgcGRpVoCuElE2tZA1treralspyURisZGtsIRslOarGyTmpDrkmDDEGdHo39oCw15zpSZbe6D9ZepKlD7JG8PoA4tjuc3xVR-PHS7Q-oEnaDv6_iB9YTHoV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modeling of a heat-integrated biomass downdraft gasifier: Estimating key model parameters using experimental data</title><source>ScienceDirect Freedom Collection</source><creator>Haidar, Houda M. ; Butler, James W. ; Lotfi, Samira ; Vo, Anh-Duong Dieu ; Gogolek, Peter ; McAuley, Kimberley</creator><creatorcontrib>Haidar, Houda M. ; Butler, James W. ; Lotfi, Samira ; Vo, Anh-Duong Dieu ; Gogolek, Peter ; McAuley, Kimberley</creatorcontrib><description>[Display omitted] •Subset selection is used to aid parameter estimation in a downdraft gasifier model.•Model parameters were ranked and 27 out of 40 were tuned for reliable predictions.•Parameter estimates result in 50% reduction in objective function from 1565 to 785.•Diagnosis of 13 unestimated parameters reveals correlation and low sensitivities.•Model is validated and used to study effects of bed height and producer-gas demand. Kinetic and transport parameters in a model of a heat-integrated biomass downdraft gasifier are poorly known and require estimation. The large number of parameters (40) arises from pyrolysis, combustion, and gasification reactions, as well as heat-transfer phenomena inside the gasifier and associated heat-integration system. Due to complexity of the model and the limited available data, only a subset of the parameters can be reliably estimated. A sensitivity-based approach is used to determine the appropriate number of parameters to estimate while preventing overfitting. It is hypothesized that estimating these important parameters will result in better model predictions. The 40 parameters are ranked from most-estimable to least-estimable based on sensitivity information and initial parameter uncertainties. A mean-squared-error criterion is then used to determine that 27 parameters should be estimated using data from 15 experimental runs, with the remaining 13 parameters fixed at their initial values. A diagnosis of the 13 low-ranked parameters reveals that 8 parameters are not estimated due to correlation with high-ranked parameters and that the remaining 5 parameters have little influence on model predictions. The model is validated using two runs not used for parameter tuning. The updated model is used to predict that a taller gasifier would not improve the quality of the producer gas. Simulations show that increasing the producer-gas demand by 50% results in a 15.2% decrease in H2/CO ratio, a 52.6% increase in tar content in the producer gas, and a 44% increase in electrical energy output.</description><identifier>ISSN: 0196-8904</identifier><identifier>DOI: 10.1016/j.enconman.2024.119372</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Biomass gasification ; Downdraft gasifier ; Heat integration ; Mathematical model ; Parameter estimation</subject><ispartof>Energy conversion and management, 2025-02, Vol.325, p.119372, Article 119372</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1522-3200f0797ed754890e0ec74ef423398738ab8788d57d124ce63bcd439731e79f3</cites><orcidid>0000-0002-5201-0310 ; 0000-0001-9455-9857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Haidar, Houda M.</creatorcontrib><creatorcontrib>Butler, James W.</creatorcontrib><creatorcontrib>Lotfi, Samira</creatorcontrib><creatorcontrib>Vo, Anh-Duong Dieu</creatorcontrib><creatorcontrib>Gogolek, Peter</creatorcontrib><creatorcontrib>McAuley, Kimberley</creatorcontrib><title>Modeling of a heat-integrated biomass downdraft gasifier: Estimating key model parameters using experimental data</title><title>Energy conversion and management</title><description>[Display omitted] •Subset selection is used to aid parameter estimation in a downdraft gasifier model.•Model parameters were ranked and 27 out of 40 were tuned for reliable predictions.•Parameter estimates result in 50% reduction in objective function from 1565 to 785.•Diagnosis of 13 unestimated parameters reveals correlation and low sensitivities.•Model is validated and used to study effects of bed height and producer-gas demand. Kinetic and transport parameters in a model of a heat-integrated biomass downdraft gasifier are poorly known and require estimation. The large number of parameters (40) arises from pyrolysis, combustion, and gasification reactions, as well as heat-transfer phenomena inside the gasifier and associated heat-integration system. Due to complexity of the model and the limited available data, only a subset of the parameters can be reliably estimated. A sensitivity-based approach is used to determine the appropriate number of parameters to estimate while preventing overfitting. It is hypothesized that estimating these important parameters will result in better model predictions. The 40 parameters are ranked from most-estimable to least-estimable based on sensitivity information and initial parameter uncertainties. A mean-squared-error criterion is then used to determine that 27 parameters should be estimated using data from 15 experimental runs, with the remaining 13 parameters fixed at their initial values. A diagnosis of the 13 low-ranked parameters reveals that 8 parameters are not estimated due to correlation with high-ranked parameters and that the remaining 5 parameters have little influence on model predictions. The model is validated using two runs not used for parameter tuning. The updated model is used to predict that a taller gasifier would not improve the quality of the producer gas. Simulations show that increasing the producer-gas demand by 50% results in a 15.2% decrease in H2/CO ratio, a 52.6% increase in tar content in the producer gas, and a 44% increase in electrical energy output.</description><subject>Biomass gasification</subject><subject>Downdraft gasifier</subject><subject>Heat integration</subject><subject>Mathematical model</subject><subject>Parameter estimation</subject><issn>0196-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRb0AiVL4BeQfSPAjiRNWoKo8pCI2sLYm9ri4NEmxzaN_T6LCmtUsZs7VnUPIBWc5Z7y63OTYm6HvoM8FE0XOeSOVOCIzxpsqqxtWnJDTGDeMMVmyakbeHweLW9-v6eAo0FeElPk-4TpAQktbP3QQI7XDV28DuETXEL3zGK7oMibfQZrYN9zTbgqiOwjQYcIQ6UecVvi9w-A77BNsqYUEZ-TYwTbi-e-ck5fb5fPiPls93T0sblaZ4aUQmRSMOaYahVaVxdgcGRpVoCuElE2tZA1treralspyURisZGtsIRslOarGyTmpDrkmDDEGdHo39oCw15zpSZbe6D9ZepKlD7JG8PoA4tjuc3xVR-PHS7Q-oEnaDv6_iB9YTHoV</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Haidar, Houda M.</creator><creator>Butler, James W.</creator><creator>Lotfi, Samira</creator><creator>Vo, Anh-Duong Dieu</creator><creator>Gogolek, Peter</creator><creator>McAuley, Kimberley</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5201-0310</orcidid><orcidid>https://orcid.org/0000-0001-9455-9857</orcidid></search><sort><creationdate>20250201</creationdate><title>Modeling of a heat-integrated biomass downdraft gasifier: Estimating key model parameters using experimental data</title><author>Haidar, Houda M. ; Butler, James W. ; Lotfi, Samira ; Vo, Anh-Duong Dieu ; Gogolek, Peter ; McAuley, Kimberley</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1522-3200f0797ed754890e0ec74ef423398738ab8788d57d124ce63bcd439731e79f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Biomass gasification</topic><topic>Downdraft gasifier</topic><topic>Heat integration</topic><topic>Mathematical model</topic><topic>Parameter estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haidar, Houda M.</creatorcontrib><creatorcontrib>Butler, James W.</creatorcontrib><creatorcontrib>Lotfi, Samira</creatorcontrib><creatorcontrib>Vo, Anh-Duong Dieu</creatorcontrib><creatorcontrib>Gogolek, Peter</creatorcontrib><creatorcontrib>McAuley, Kimberley</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haidar, Houda M.</au><au>Butler, James W.</au><au>Lotfi, Samira</au><au>Vo, Anh-Duong Dieu</au><au>Gogolek, Peter</au><au>McAuley, Kimberley</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of a heat-integrated biomass downdraft gasifier: Estimating key model parameters using experimental data</atitle><jtitle>Energy conversion and management</jtitle><date>2025-02-01</date><risdate>2025</risdate><volume>325</volume><spage>119372</spage><pages>119372-</pages><artnum>119372</artnum><issn>0196-8904</issn><abstract>[Display omitted] •Subset selection is used to aid parameter estimation in a downdraft gasifier model.•Model parameters were ranked and 27 out of 40 were tuned for reliable predictions.•Parameter estimates result in 50% reduction in objective function from 1565 to 785.•Diagnosis of 13 unestimated parameters reveals correlation and low sensitivities.•Model is validated and used to study effects of bed height and producer-gas demand. Kinetic and transport parameters in a model of a heat-integrated biomass downdraft gasifier are poorly known and require estimation. The large number of parameters (40) arises from pyrolysis, combustion, and gasification reactions, as well as heat-transfer phenomena inside the gasifier and associated heat-integration system. Due to complexity of the model and the limited available data, only a subset of the parameters can be reliably estimated. A sensitivity-based approach is used to determine the appropriate number of parameters to estimate while preventing overfitting. It is hypothesized that estimating these important parameters will result in better model predictions. The 40 parameters are ranked from most-estimable to least-estimable based on sensitivity information and initial parameter uncertainties. A mean-squared-error criterion is then used to determine that 27 parameters should be estimated using data from 15 experimental runs, with the remaining 13 parameters fixed at their initial values. A diagnosis of the 13 low-ranked parameters reveals that 8 parameters are not estimated due to correlation with high-ranked parameters and that the remaining 5 parameters have little influence on model predictions. The model is validated using two runs not used for parameter tuning. The updated model is used to predict that a taller gasifier would not improve the quality of the producer gas. Simulations show that increasing the producer-gas demand by 50% results in a 15.2% decrease in H2/CO ratio, a 52.6% increase in tar content in the producer gas, and a 44% increase in electrical energy output.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2024.119372</doi><orcidid>https://orcid.org/0000-0002-5201-0310</orcidid><orcidid>https://orcid.org/0000-0001-9455-9857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2025-02, Vol.325, p.119372, Article 119372
issn 0196-8904
language eng
recordid cdi_crossref_primary_10_1016_j_enconman_2024_119372
source ScienceDirect Freedom Collection
subjects Biomass gasification
Downdraft gasifier
Heat integration
Mathematical model
Parameter estimation
title Modeling of a heat-integrated biomass downdraft gasifier: Estimating key model parameters using experimental data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20a%20heat-integrated%20biomass%20downdraft%20gasifier:%20Estimating%20key%20model%20parameters%20using%20experimental%20data&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Haidar,%20Houda%20M.&rft.date=2025-02-01&rft.volume=325&rft.spage=119372&rft.pages=119372-&rft.artnum=119372&rft.issn=0196-8904&rft_id=info:doi/10.1016/j.enconman.2024.119372&rft_dat=%3Celsevier_cross%3ES019689042401313X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1522-3200f0797ed754890e0ec74ef423398738ab8788d57d124ce63bcd439731e79f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true