Loading…

Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption

The accurate prediction of electric power consumption in the residential sector is a desirable action to minimize potential energy losses and maximize social welfare. The goal of this study is to propose a new Deep Learning Neural Network architecture for multivariate time series problems, which inc...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2023-07, Vol.274, p.127321, Article 127321
Main Authors: Gonçalves, Rui, Ribeiro, Vitor Miguel, Pereira, Fernando Lobo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-b6f847bcf34afec04d1be584fd7567927bf99926450fd07dd33a88199a1fdcda3
cites cdi_FETCH-LOGICAL-c352t-b6f847bcf34afec04d1be584fd7567927bf99926450fd07dd33a88199a1fdcda3
container_end_page
container_issue
container_start_page 127321
container_title Energy (Oxford)
container_volume 274
creator Gonçalves, Rui
Ribeiro, Vitor Miguel
Pereira, Fernando Lobo
description The accurate prediction of electric power consumption in the residential sector is a desirable action to minimize potential energy losses and maximize social welfare. The goal of this study is to propose a new Deep Learning Neural Network architecture for multivariate time series problems, which includes a novel attention mechanism applied to the Convolutional Long Short-Term Memory Network model. The new attention mechanism is implemented with convolutional layers, splits the data by explanatory variable, incorporates the cyclical segmentation of data by day, and uses causal and roll padding to ensure proper information augmentation before convolutional operations. The output of the attention block is a bi-dimensional context map for each explanatory variable. Considering the Household Electric Power Consumption data set provided by the repository of the University of California at Irvine, the proposed Variable Split Convolutional Attention model is trained, tested, and compared with several alternatives. The main result of this study reveals that the innovative model exhibits the lowest forecasting error. •Transform a 2D input map into a 3D input map for cyclic segmentation.•Roll padding for multivariate time-series analysis.•2D convolutional attention inside the attention block.•2D maps of attention weights generated per variable.
doi_str_mv 10.1016/j.energy.2023.127321
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_energy_2023_127321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544223007156</els_id><sourcerecordid>S0360544223007156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-b6f847bcf34afec04d1be584fd7567927bf99926450fd07dd33a88199a1fdcda3</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRbVooWnaP-hCP2BXkuWHuiiE9AmBLvrYClkaJQqOZCQnIX9fB3fd1VwGzmXmIHRHSU4Jre63OXiI61POCCtyyuqC0Qs0I0VFspJzdoWuU9oSQspGiBk6_qjoVNsB_uw7N-Bl8IfQ7QcXvOrwYhjAn_MDXmAfDtDhJ4Aer0BF7_wa74IZd6ofWTB4CHjYAN6EfYJN6AyGDvQQncZ9OELEOvi03_Xnwht0aVWX4PZvztH3y_PX8i1bfby-LxerTBclG7K2sg2vW20Lrixowg1toWy4NXVZ1YLVrRVCsIqXxBpSG1MUqmmoEIpao40q5ohPvTqGlCJY2Ue3U_EkKZFnYXIrJ2HyLExOwkbsccJgvO3gIMqkHXgNxsXxJWmC-7_gFzrie18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Gonçalves, Rui ; Ribeiro, Vitor Miguel ; Pereira, Fernando Lobo</creator><creatorcontrib>Gonçalves, Rui ; Ribeiro, Vitor Miguel ; Pereira, Fernando Lobo</creatorcontrib><description>The accurate prediction of electric power consumption in the residential sector is a desirable action to minimize potential energy losses and maximize social welfare. The goal of this study is to propose a new Deep Learning Neural Network architecture for multivariate time series problems, which includes a novel attention mechanism applied to the Convolutional Long Short-Term Memory Network model. The new attention mechanism is implemented with convolutional layers, splits the data by explanatory variable, incorporates the cyclical segmentation of data by day, and uses causal and roll padding to ensure proper information augmentation before convolutional operations. The output of the attention block is a bi-dimensional context map for each explanatory variable. Considering the Household Electric Power Consumption data set provided by the repository of the University of California at Irvine, the proposed Variable Split Convolutional Attention model is trained, tested, and compared with several alternatives. The main result of this study reveals that the innovative model exhibits the lowest forecasting error. •Transform a 2D input map into a 3D input map for cyclic segmentation.•Roll padding for multivariate time-series analysis.•2D convolutional attention inside the attention block.•2D maps of attention weights generated per variable.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2023.127321</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Attention mechanism ; Deep learning ; Electric energy consumption</subject><ispartof>Energy (Oxford), 2023-07, Vol.274, p.127321, Article 127321</ispartof><rights>2023 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-b6f847bcf34afec04d1be584fd7567927bf99926450fd07dd33a88199a1fdcda3</citedby><cites>FETCH-LOGICAL-c352t-b6f847bcf34afec04d1be584fd7567927bf99926450fd07dd33a88199a1fdcda3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gonçalves, Rui</creatorcontrib><creatorcontrib>Ribeiro, Vitor Miguel</creatorcontrib><creatorcontrib>Pereira, Fernando Lobo</creatorcontrib><title>Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption</title><title>Energy (Oxford)</title><description>The accurate prediction of electric power consumption in the residential sector is a desirable action to minimize potential energy losses and maximize social welfare. The goal of this study is to propose a new Deep Learning Neural Network architecture for multivariate time series problems, which includes a novel attention mechanism applied to the Convolutional Long Short-Term Memory Network model. The new attention mechanism is implemented with convolutional layers, splits the data by explanatory variable, incorporates the cyclical segmentation of data by day, and uses causal and roll padding to ensure proper information augmentation before convolutional operations. The output of the attention block is a bi-dimensional context map for each explanatory variable. Considering the Household Electric Power Consumption data set provided by the repository of the University of California at Irvine, the proposed Variable Split Convolutional Attention model is trained, tested, and compared with several alternatives. The main result of this study reveals that the innovative model exhibits the lowest forecasting error. •Transform a 2D input map into a 3D input map for cyclic segmentation.•Roll padding for multivariate time-series analysis.•2D convolutional attention inside the attention block.•2D maps of attention weights generated per variable.</description><subject>Attention mechanism</subject><subject>Deep learning</subject><subject>Electric energy consumption</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRbVooWnaP-hCP2BXkuWHuiiE9AmBLvrYClkaJQqOZCQnIX9fB3fd1VwGzmXmIHRHSU4Jre63OXiI61POCCtyyuqC0Qs0I0VFspJzdoWuU9oSQspGiBk6_qjoVNsB_uw7N-Bl8IfQ7QcXvOrwYhjAn_MDXmAfDtDhJ4Aer0BF7_wa74IZd6ofWTB4CHjYAN6EfYJN6AyGDvQQncZ9OELEOvi03_Xnwht0aVWX4PZvztH3y_PX8i1bfby-LxerTBclG7K2sg2vW20Lrixowg1toWy4NXVZ1YLVrRVCsIqXxBpSG1MUqmmoEIpao40q5ohPvTqGlCJY2Ue3U_EkKZFnYXIrJ2HyLExOwkbsccJgvO3gIMqkHXgNxsXxJWmC-7_gFzrie18</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Gonçalves, Rui</creator><creator>Ribeiro, Vitor Miguel</creator><creator>Pereira, Fernando Lobo</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230701</creationdate><title>Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption</title><author>Gonçalves, Rui ; Ribeiro, Vitor Miguel ; Pereira, Fernando Lobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-b6f847bcf34afec04d1be584fd7567927bf99926450fd07dd33a88199a1fdcda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Attention mechanism</topic><topic>Deep learning</topic><topic>Electric energy consumption</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonçalves, Rui</creatorcontrib><creatorcontrib>Ribeiro, Vitor Miguel</creatorcontrib><creatorcontrib>Pereira, Fernando Lobo</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonçalves, Rui</au><au>Ribeiro, Vitor Miguel</au><au>Pereira, Fernando Lobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption</atitle><jtitle>Energy (Oxford)</jtitle><date>2023-07-01</date><risdate>2023</risdate><volume>274</volume><spage>127321</spage><pages>127321-</pages><artnum>127321</artnum><issn>0360-5442</issn><abstract>The accurate prediction of electric power consumption in the residential sector is a desirable action to minimize potential energy losses and maximize social welfare. The goal of this study is to propose a new Deep Learning Neural Network architecture for multivariate time series problems, which includes a novel attention mechanism applied to the Convolutional Long Short-Term Memory Network model. The new attention mechanism is implemented with convolutional layers, splits the data by explanatory variable, incorporates the cyclical segmentation of data by day, and uses causal and roll padding to ensure proper information augmentation before convolutional operations. The output of the attention block is a bi-dimensional context map for each explanatory variable. Considering the Household Electric Power Consumption data set provided by the repository of the University of California at Irvine, the proposed Variable Split Convolutional Attention model is trained, tested, and compared with several alternatives. The main result of this study reveals that the innovative model exhibits the lowest forecasting error. •Transform a 2D input map into a 3D input map for cyclic segmentation.•Roll padding for multivariate time-series analysis.•2D convolutional attention inside the attention block.•2D maps of attention weights generated per variable.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2023.127321</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2023-07, Vol.274, p.127321, Article 127321
issn 0360-5442
language eng
recordid cdi_crossref_primary_10_1016_j_energy_2023_127321
source ScienceDirect Freedom Collection 2022-2024
subjects Attention mechanism
Deep learning
Electric energy consumption
title Variable Split Convolutional Attention: A novel Deep Learning model applied to the household electric power consumption
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variable%20Split%20Convolutional%20Attention:%20A%20novel%20Deep%20Learning%20model%20applied%20to%20the%20household%20electric%20power%20consumption&rft.jtitle=Energy%20(Oxford)&rft.au=Gon%C3%A7alves,%20Rui&rft.date=2023-07-01&rft.volume=274&rft.spage=127321&rft.pages=127321-&rft.artnum=127321&rft.issn=0360-5442&rft_id=info:doi/10.1016/j.energy.2023.127321&rft_dat=%3Celsevier_cross%3ES0360544223007156%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-b6f847bcf34afec04d1be584fd7567927bf99926450fd07dd33a88199a1fdcda3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true