Loading…

Data-driven method for optimized supply temperatures in residential buildings

The energy required for space heating amounts to approximately 68% of the total energy demand of existing buildings in Europe. The heat requirement of a building, and thus its carbon emission, can be lowered by optimizing the supply and return temperature of the heating system. A lower supply temper...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2023-12, Vol.284, p.129183, Article 129183
Main Authors: Pothof, I., Vreeken, D., Meerkerk, M. van
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The energy required for space heating amounts to approximately 68% of the total energy demand of existing buildings in Europe. The heat requirement of a building, and thus its carbon emission, can be lowered by optimizing the supply and return temperature of the heating system. A lower supply temperature enables a wider variety of transition pathways towards sustainable heating with reduced carbon emissions. However, the minimum supply temperature that guarantees acceptable indoor temperatures in existing dwellings during design weather conditions is still unknown. In this study, we determine the minimum supply temperature by fitting a 2 R–2C model to hourly measurement data. The measurement data is obtained from a representative set of 220 existing gas-fired dwellings in the Netherlands. The heating system of each dwelling was equipped with a pulse flowmeter and temperature sensors on both the supply and return side. Additionally, data was collected from the thermostat in the main living room and the gas boiler. The data was supplemented with weather data from a nearby weather station. The data-driven model shows that the minimum supply temperature can be lower than 55 °C for 60% of the dwellings during design weather conditions (i.e., −10 °C in the Netherlands). Moreover, the minimum supply temperature is poorly correlated with general building properties, such as the building typology, construction period or specific annual space heating demand (kWh/(m2yr)). On the contrary, the ratio between the required and installed heat output of the radiators in the heating system is a promising parameter to predict the minimum design supply temperature of an individual dwelling that guarantees an acceptable indoor temperature during design weather conditions. •Direct measurement of supply and return temperature and flow rate in more than 200 Dutch dwellings, in combination with indoor temperature and specifications of radiators.•Data-driven method to determine minimum supply temperature for space heating during design conditions•The minimum supply temperature is lower than 55 °C in 60% of Dutch residential building stock
ISSN:0360-5442
DOI:10.1016/j.energy.2023.129183