Loading…

Multi-objective optimization study on the performance of double Darrieus hybrid vertical axis wind turbine based on DOE-RSM and MOPSO-MODM

The Double Darrieus Vertical Axis Wind Turbine (DD-VAWT) effectively enhances wind energy efficiency at low tip speed ratios. In this study, the multi-objective optimization method is constructed for DD-VAWT. The optimization objective is to enhance the power coefficient as well as reduce the maximu...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2024-07, Vol.299, p.131406, Article 131406
Main Authors: Shen, Zhuang, Gong, Shuguang, Zu, Hongxiao, Guo, Weiyu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Double Darrieus Vertical Axis Wind Turbine (DD-VAWT) effectively enhances wind energy efficiency at low tip speed ratios. In this study, the multi-objective optimization method is constructed for DD-VAWT. The optimization objective is to enhance the power coefficient as well as reduce the maximum instantaneous torque coefficient, while decision variables include the inner ring wind turbine diameter, inner ring wind turbine height, inner ring wind turbine blade airfoil chord length and inner and outer ring wind turbine phase angle. Firstly, the computational fluid hydrodynamics model of DD-VAWT is established and validated by experimental data from the literature. Then, the regression model between critical structural parameters and power coefficients, maximum instantaneous torque coefficients is constructed using response surface analysis. Finally, the multi-objective particle swarm optimization algorithm is used to optimize the objective and the optimal solution is selected from the Pareto frontier solution. This work provides a direction to improve the operating performance of DD-VAWT at low tip speed ratios as well as contributes to energy saving and emission reduction. [Display omitted] •A numerical calculation model of DD-VAWT is established.•The influence mechanism of multiple factors on aerodynamic characteristics is investigated.•The optimization method of combined RSM and MOPSO is constructed.•The optimal parameter levels of DD-VAWT are obtained.
ISSN:0360-5442
DOI:10.1016/j.energy.2024.131406