Loading…

A matheuristic applied to clustering rural properties and allocating plants for biogas generation

Establishing partnerships among agro-industrial properties and selecting ideal locations for biogas plants are crucial challenges in large-scale biogas production and can influence both operational efficiency and waste management. In this context, this research proposes a new matheuristic that addre...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2024-10, Vol.305, p.132249, Article 132249
Main Authors: Obal, Thalita Monteiro, de Souza, Jovani Taveira, Florentino, Helenice de Oliveira, de Francisco, Antonio Carlos, Soler, Edilaine Martins
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c218t-1dfed7ad464d5c29c6e9354a4a95977e8ad81076cbb02361c38e97d92f670a2f3
container_end_page
container_issue
container_start_page 132249
container_title Energy (Oxford)
container_volume 305
creator Obal, Thalita Monteiro
de Souza, Jovani Taveira
Florentino, Helenice de Oliveira
de Francisco, Antonio Carlos
Soler, Edilaine Martins
description Establishing partnerships among agro-industrial properties and selecting ideal locations for biogas plants are crucial challenges in large-scale biogas production and can influence both operational efficiency and waste management. In this context, this research proposes a new matheuristic that addresses the problems of defining a group of properties and an optimal number of groups and identifies the best allocation to the biogas plant. The group properties were defined by hierarchical and K-means cluster algorithms. The best location for the biogas plant was determined by the proposed multiobjective mathematical model. The best cluster number was decided by two strategies: (1) one that selected the closest non-dominated solutions to the ideal solution (M1) and (2) one that favored the most environmentally friendly solution (M2). The matheuristic was tested using three real databases, which yielded strategic clusters with an average daily biogas production of 544.93 m³/day (M1 and M2) for DataBase 1, 1635,156.00 m³/day (M1) and 403,497.50 m³/day (M2) for DataBase 2, and 318,662.50 m³/day (M1) and 20,479.58 m³/day (M2) for DataBase 3. This research provides an opportunity to add value to agro-industrial properties by achieving energy security and developing new business networks. [Display omitted] •A matheuristic approach for clustering and plant location optimization is proposed.•Innovative clustering method for agribusiness sector cooperatives.•Exact method for optimal biogas plant location using a mathematical model.•Efficient resource allocation reduces costs and improves infrastructure use.•Enhanced collaboration and sustainability boost profitability in agribusiness.
doi_str_mv 10.1016/j.energy.2024.132249
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_energy_2024_132249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544224020231</els_id><sourcerecordid>3153652719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-1dfed7ad464d5c29c6e9354a4a95977e8ad81076cbb02361c38e97d92f670a2f3</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhjOARCm8AYNHlgbf4sQLUlVxkyqxwGy59klw5cbBdpD69iQKM9MZ_ov-8xXFHcElwUQ8HEvoIXbnkmLKS8Io5fKiWGEm8KbinF4V1ykdMcZVI-Wq0Ft00vkLxuhSdgbpYfAOLMoBGT-mDNH1HYpj1B4NMQwQs4OEdG-R9j4YnWd98LrPCbUhooMLnU6om1dMYuhvistW-wS3f3ddfD4_fexeN_v3l7fddr8xlDR5Q2wLttaWC24rQ6URIFnFNdeyknUNjbYNwbUwhwOmTBDDGpC1lbQVNda0ZevifumdZn6PkLI6uWTAT9MgjEkxUjFR0ZrIycoXq4khpQitGqI76XhWBKuZojqqhaKaKaqF4hR7XGIwvfHjIKpkHPQGrItgsrLB_V_wC4nOgPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153652719</pqid></control><display><type>article</type><title>A matheuristic applied to clustering rural properties and allocating plants for biogas generation</title><source>Elsevier</source><creator>Obal, Thalita Monteiro ; de Souza, Jovani Taveira ; Florentino, Helenice de Oliveira ; de Francisco, Antonio Carlos ; Soler, Edilaine Martins</creator><creatorcontrib>Obal, Thalita Monteiro ; de Souza, Jovani Taveira ; Florentino, Helenice de Oliveira ; de Francisco, Antonio Carlos ; Soler, Edilaine Martins</creatorcontrib><description>Establishing partnerships among agro-industrial properties and selecting ideal locations for biogas plants are crucial challenges in large-scale biogas production and can influence both operational efficiency and waste management. In this context, this research proposes a new matheuristic that addresses the problems of defining a group of properties and an optimal number of groups and identifies the best allocation to the biogas plant. The group properties were defined by hierarchical and K-means cluster algorithms. The best location for the biogas plant was determined by the proposed multiobjective mathematical model. The best cluster number was decided by two strategies: (1) one that selected the closest non-dominated solutions to the ideal solution (M1) and (2) one that favored the most environmentally friendly solution (M2). The matheuristic was tested using three real databases, which yielded strategic clusters with an average daily biogas production of 544.93 m³/day (M1 and M2) for DataBase 1, 1635,156.00 m³/day (M1) and 403,497.50 m³/day (M2) for DataBase 2, and 318,662.50 m³/day (M1) and 20,479.58 m³/day (M2) for DataBase 3. This research provides an opportunity to add value to agro-industrial properties by achieving energy security and developing new business networks. [Display omitted] •A matheuristic approach for clustering and plant location optimization is proposed.•Innovative clustering method for agribusiness sector cooperatives.•Exact method for optimal biogas plant location using a mathematical model.•Efficient resource allocation reduces costs and improves infrastructure use.•Enhanced collaboration and sustainability boost profitability in agribusiness.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2024.132249</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Agglomerative hierarchical clustering ; biogas ; Biogas generation ; Biogas network business ; Biogas plant allocation ; energy ; gas production (biological) ; K-means clustering ; mathematical models ; Multiobjective optimization ; waste management</subject><ispartof>Energy (Oxford), 2024-10, Vol.305, p.132249, Article 132249</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c218t-1dfed7ad464d5c29c6e9354a4a95977e8ad81076cbb02361c38e97d92f670a2f3</cites><orcidid>0000-0003-0852-6886 ; 0000-0002-7615-5768 ; 0000-0001-8545-8149 ; 0000-0003-0401-4445</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Obal, Thalita Monteiro</creatorcontrib><creatorcontrib>de Souza, Jovani Taveira</creatorcontrib><creatorcontrib>Florentino, Helenice de Oliveira</creatorcontrib><creatorcontrib>de Francisco, Antonio Carlos</creatorcontrib><creatorcontrib>Soler, Edilaine Martins</creatorcontrib><title>A matheuristic applied to clustering rural properties and allocating plants for biogas generation</title><title>Energy (Oxford)</title><description>Establishing partnerships among agro-industrial properties and selecting ideal locations for biogas plants are crucial challenges in large-scale biogas production and can influence both operational efficiency and waste management. In this context, this research proposes a new matheuristic that addresses the problems of defining a group of properties and an optimal number of groups and identifies the best allocation to the biogas plant. The group properties were defined by hierarchical and K-means cluster algorithms. The best location for the biogas plant was determined by the proposed multiobjective mathematical model. The best cluster number was decided by two strategies: (1) one that selected the closest non-dominated solutions to the ideal solution (M1) and (2) one that favored the most environmentally friendly solution (M2). The matheuristic was tested using three real databases, which yielded strategic clusters with an average daily biogas production of 544.93 m³/day (M1 and M2) for DataBase 1, 1635,156.00 m³/day (M1) and 403,497.50 m³/day (M2) for DataBase 2, and 318,662.50 m³/day (M1) and 20,479.58 m³/day (M2) for DataBase 3. This research provides an opportunity to add value to agro-industrial properties by achieving energy security and developing new business networks. [Display omitted] •A matheuristic approach for clustering and plant location optimization is proposed.•Innovative clustering method for agribusiness sector cooperatives.•Exact method for optimal biogas plant location using a mathematical model.•Efficient resource allocation reduces costs and improves infrastructure use.•Enhanced collaboration and sustainability boost profitability in agribusiness.</description><subject>Agglomerative hierarchical clustering</subject><subject>biogas</subject><subject>Biogas generation</subject><subject>Biogas network business</subject><subject>Biogas plant allocation</subject><subject>energy</subject><subject>gas production (biological)</subject><subject>K-means clustering</subject><subject>mathematical models</subject><subject>Multiobjective optimization</subject><subject>waste management</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhjOARCm8AYNHlgbf4sQLUlVxkyqxwGy59klw5cbBdpD69iQKM9MZ_ov-8xXFHcElwUQ8HEvoIXbnkmLKS8Io5fKiWGEm8KbinF4V1ykdMcZVI-Wq0Ft00vkLxuhSdgbpYfAOLMoBGT-mDNH1HYpj1B4NMQwQs4OEdG-R9j4YnWd98LrPCbUhooMLnU6om1dMYuhvistW-wS3f3ddfD4_fexeN_v3l7fddr8xlDR5Q2wLttaWC24rQ6URIFnFNdeyknUNjbYNwbUwhwOmTBDDGpC1lbQVNda0ZevifumdZn6PkLI6uWTAT9MgjEkxUjFR0ZrIycoXq4khpQitGqI76XhWBKuZojqqhaKaKaqF4hR7XGIwvfHjIKpkHPQGrItgsrLB_V_wC4nOgPw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Obal, Thalita Monteiro</creator><creator>de Souza, Jovani Taveira</creator><creator>Florentino, Helenice de Oliveira</creator><creator>de Francisco, Antonio Carlos</creator><creator>Soler, Edilaine Martins</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><orcidid>https://orcid.org/0000-0003-0852-6886</orcidid><orcidid>https://orcid.org/0000-0002-7615-5768</orcidid><orcidid>https://orcid.org/0000-0001-8545-8149</orcidid><orcidid>https://orcid.org/0000-0003-0401-4445</orcidid></search><sort><creationdate>20241001</creationdate><title>A matheuristic applied to clustering rural properties and allocating plants for biogas generation</title><author>Obal, Thalita Monteiro ; de Souza, Jovani Taveira ; Florentino, Helenice de Oliveira ; de Francisco, Antonio Carlos ; Soler, Edilaine Martins</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-1dfed7ad464d5c29c6e9354a4a95977e8ad81076cbb02361c38e97d92f670a2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agglomerative hierarchical clustering</topic><topic>biogas</topic><topic>Biogas generation</topic><topic>Biogas network business</topic><topic>Biogas plant allocation</topic><topic>energy</topic><topic>gas production (biological)</topic><topic>K-means clustering</topic><topic>mathematical models</topic><topic>Multiobjective optimization</topic><topic>waste management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obal, Thalita Monteiro</creatorcontrib><creatorcontrib>de Souza, Jovani Taveira</creatorcontrib><creatorcontrib>Florentino, Helenice de Oliveira</creatorcontrib><creatorcontrib>de Francisco, Antonio Carlos</creatorcontrib><creatorcontrib>Soler, Edilaine Martins</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obal, Thalita Monteiro</au><au>de Souza, Jovani Taveira</au><au>Florentino, Helenice de Oliveira</au><au>de Francisco, Antonio Carlos</au><au>Soler, Edilaine Martins</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A matheuristic applied to clustering rural properties and allocating plants for biogas generation</atitle><jtitle>Energy (Oxford)</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>305</volume><spage>132249</spage><pages>132249-</pages><artnum>132249</artnum><issn>0360-5442</issn><abstract>Establishing partnerships among agro-industrial properties and selecting ideal locations for biogas plants are crucial challenges in large-scale biogas production and can influence both operational efficiency and waste management. In this context, this research proposes a new matheuristic that addresses the problems of defining a group of properties and an optimal number of groups and identifies the best allocation to the biogas plant. The group properties were defined by hierarchical and K-means cluster algorithms. The best location for the biogas plant was determined by the proposed multiobjective mathematical model. The best cluster number was decided by two strategies: (1) one that selected the closest non-dominated solutions to the ideal solution (M1) and (2) one that favored the most environmentally friendly solution (M2). The matheuristic was tested using three real databases, which yielded strategic clusters with an average daily biogas production of 544.93 m³/day (M1 and M2) for DataBase 1, 1635,156.00 m³/day (M1) and 403,497.50 m³/day (M2) for DataBase 2, and 318,662.50 m³/day (M1) and 20,479.58 m³/day (M2) for DataBase 3. This research provides an opportunity to add value to agro-industrial properties by achieving energy security and developing new business networks. [Display omitted] •A matheuristic approach for clustering and plant location optimization is proposed.•Innovative clustering method for agribusiness sector cooperatives.•Exact method for optimal biogas plant location using a mathematical model.•Efficient resource allocation reduces costs and improves infrastructure use.•Enhanced collaboration and sustainability boost profitability in agribusiness.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2024.132249</doi><orcidid>https://orcid.org/0000-0003-0852-6886</orcidid><orcidid>https://orcid.org/0000-0002-7615-5768</orcidid><orcidid>https://orcid.org/0000-0001-8545-8149</orcidid><orcidid>https://orcid.org/0000-0003-0401-4445</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2024-10, Vol.305, p.132249, Article 132249
issn 0360-5442
language eng
recordid cdi_crossref_primary_10_1016_j_energy_2024_132249
source Elsevier
subjects Agglomerative hierarchical clustering
biogas
Biogas generation
Biogas network business
Biogas plant allocation
energy
gas production (biological)
K-means clustering
mathematical models
Multiobjective optimization
waste management
title A matheuristic applied to clustering rural properties and allocating plants for biogas generation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20matheuristic%20applied%20to%20clustering%20rural%20properties%20and%20allocating%20plants%20for%20biogas%20generation&rft.jtitle=Energy%20(Oxford)&rft.au=Obal,%20Thalita%20Monteiro&rft.date=2024-10-01&rft.volume=305&rft.spage=132249&rft.pages=132249-&rft.artnum=132249&rft.issn=0360-5442&rft_id=info:doi/10.1016/j.energy.2024.132249&rft_dat=%3Cproquest_cross%3E3153652719%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c218t-1dfed7ad464d5c29c6e9354a4a95977e8ad81076cbb02361c38e97d92f670a2f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153652719&rft_id=info:pmid/&rfr_iscdi=true