Loading…

Parameter optimization of modern machining processes using teaching–learning-based optimization algorithm

Modern machining processes are now-a-days widely used by manufacturing industries in order to produce high quality precise and very complex products. These modern machining processes involve large number of input parameters which may affect the cost and quality of the products. Selection of optimum...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence 2013-01, Vol.26 (1), p.524-531
Main Authors: Venkata Rao, R., Kalyankar, V.D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Modern machining processes are now-a-days widely used by manufacturing industries in order to produce high quality precise and very complex products. These modern machining processes involve large number of input parameters which may affect the cost and quality of the products. Selection of optimum machining parameters in such processes is very important to satisfy all the conflicting objectives of the process. In this research work, a newly developed advanced algorithm named ‘teaching–learning-based optimization (TLBO) algorithm’ is applied for the process parameter optimization of selected modern machining processes. This algorithm is inspired by the teaching–learning process and it works on the effect of influence of a teacher on the output of learners in a class. The important modern machining processes identified for the process parameters optimization in this work are ultrasonic machining (USM), abrasive jet machining (AJM), and wire electrical discharge machining (WEDM) process. The examples considered for these processes were attempted previously by various researchers using different optimization techniques such as genetic algorithm (GA), simulated annealing (SA), artificial bee colony algorithm (ABC), particle swarm optimization (PSO), harmony search (HS), shuffled frog leaping (SFL) etc. However, comparison between the results obtained by the proposed algorithm and those obtained by different optimization algorithms shows the better performance of the proposed algorithm. ► A new algorithm is applied for the parameter optimization of selected modern machining processes. ► Modern machining processes identified for parameters optimization are USM, AJM, and WEDM. ► The proposed TLBO algorithm can be easily applied to other modern machining processes.
ISSN:0952-1976
1873-6769
DOI:10.1016/j.engappai.2012.06.007