Loading…

A parallel deep neural network for intelligent fault diagnosis of drilling pumps

This paper introduces a novel parallel deep neural network for fault diagnosis of drilling pumps. It integrates the Convolutional Block Attention Module with the AlexNet and synchronizes with the Anomaly Transformer model to delve meticulously into both the time and time-frequency domains of signals...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence 2024-07, Vol.133, p.108071, Article 108071
Main Authors: Guo, Junyu, Yang, Yulai, Li, He, Dai, Le, Huang, Bangkui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c360t-f7c5bbbcea0dec48cd253388b4d5d97991e040c16ab5d04dbab6ad1754dc3213
cites cdi_FETCH-LOGICAL-c360t-f7c5bbbcea0dec48cd253388b4d5d97991e040c16ab5d04dbab6ad1754dc3213
container_end_page
container_issue
container_start_page 108071
container_title Engineering applications of artificial intelligence
container_volume 133
creator Guo, Junyu
Yang, Yulai
Li, He
Dai, Le
Huang, Bangkui
description This paper introduces a novel parallel deep neural network for fault diagnosis of drilling pumps. It integrates the Convolutional Block Attention Module with the AlexNet and synchronizes with the Anomaly Transformer model to delve meticulously into both the time and time-frequency domains of signals. The method prioritizes the singular extraction and subsequent amalgamation of features, facilitating a detailed view of diagnostic data and mitigating the risk of interference and overfitting. The integration of the anomaly attention of the Anomaly Transformer with the features of the Convolutional Block Attention Module results in a distinctive dual attention mechanism that is critical to the methodology. This mechanism emphasizes essential features in both the time domain and the time-frequency domain, improving the accuracy of fault diagnosis. Verification with on-site data underscores the preeminence of the approach over existing models, signaling improved reliability and accuracy in diagnosing faults in drilling pumps. This meticulous approach offers promising advances in the study and application of fault diagnosis in energy equipment, demonstrating increased efficiency and refined accuracy. •A novel Parallel Deep Neural Network-Based Fault Diagnosis Framework is proposed.•Time and time-frequency domains of signals are extracted and fused for Fault Diagnosis.•Integrating the Transformer with CBAM to consider the essential features of signals.
doi_str_mv 10.1016/j.engappai.2024.108071
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_engappai_2024_108071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095219762400229X</els_id><sourcerecordid>S095219762400229X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-f7c5bbbcea0dec48cd253388b4d5d97991e040c16ab5d04dbab6ad1754dc3213</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKuvIHmBqckkk8zsLMU_KOii-5CfO0NqmgnJVPHtHamuXR3uuZzD4UPolpIVJVTc7VcQB52S9qua1Hw2WyLpGVrQVrJKSNGdowXpmrqinRSX6KqUPSGEtVws0NsaJ511CBCwA0g4wnE-Z5k-x_yO-zFjHycIwQ8QJ9zrY5iw83qIY_EFjz122c_fOOB0PKRyjS56HQrc_OoS7R4fdpvnavv69LJZbyvLBJmqXtrGGGNBEweWt9bVDWNta7hrXCe7jgLhxFKhTeMId0YboR2VDXeW1ZQtkTjV2jyWkqFXKfuDzl-KEvWDRe3VHxb1g0WdsMzB-1MQ5nEfHrIq1kO04HwGOyk3-v8qvgGRiXD-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A parallel deep neural network for intelligent fault diagnosis of drilling pumps</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Guo, Junyu ; Yang, Yulai ; Li, He ; Dai, Le ; Huang, Bangkui</creator><creatorcontrib>Guo, Junyu ; Yang, Yulai ; Li, He ; Dai, Le ; Huang, Bangkui</creatorcontrib><description>This paper introduces a novel parallel deep neural network for fault diagnosis of drilling pumps. It integrates the Convolutional Block Attention Module with the AlexNet and synchronizes with the Anomaly Transformer model to delve meticulously into both the time and time-frequency domains of signals. The method prioritizes the singular extraction and subsequent amalgamation of features, facilitating a detailed view of diagnostic data and mitigating the risk of interference and overfitting. The integration of the anomaly attention of the Anomaly Transformer with the features of the Convolutional Block Attention Module results in a distinctive dual attention mechanism that is critical to the methodology. This mechanism emphasizes essential features in both the time domain and the time-frequency domain, improving the accuracy of fault diagnosis. Verification with on-site data underscores the preeminence of the approach over existing models, signaling improved reliability and accuracy in diagnosing faults in drilling pumps. This meticulous approach offers promising advances in the study and application of fault diagnosis in energy equipment, demonstrating increased efficiency and refined accuracy. •A novel Parallel Deep Neural Network-Based Fault Diagnosis Framework is proposed.•Time and time-frequency domains of signals are extracted and fused for Fault Diagnosis.•Integrating the Transformer with CBAM to consider the essential features of signals.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2024.108071</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Deep learning ; Drilling pump ; Fault diagnosis ; Strain signal</subject><ispartof>Engineering applications of artificial intelligence, 2024-07, Vol.133, p.108071, Article 108071</ispartof><rights>2024 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-f7c5bbbcea0dec48cd253388b4d5d97991e040c16ab5d04dbab6ad1754dc3213</citedby><cites>FETCH-LOGICAL-c360t-f7c5bbbcea0dec48cd253388b4d5d97991e040c16ab5d04dbab6ad1754dc3213</cites><orcidid>0000-0001-9462-9501 ; 0000-0002-0711-4954 ; 0000-0001-6429-9097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Guo, Junyu</creatorcontrib><creatorcontrib>Yang, Yulai</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Dai, Le</creatorcontrib><creatorcontrib>Huang, Bangkui</creatorcontrib><title>A parallel deep neural network for intelligent fault diagnosis of drilling pumps</title><title>Engineering applications of artificial intelligence</title><description>This paper introduces a novel parallel deep neural network for fault diagnosis of drilling pumps. It integrates the Convolutional Block Attention Module with the AlexNet and synchronizes with the Anomaly Transformer model to delve meticulously into both the time and time-frequency domains of signals. The method prioritizes the singular extraction and subsequent amalgamation of features, facilitating a detailed view of diagnostic data and mitigating the risk of interference and overfitting. The integration of the anomaly attention of the Anomaly Transformer with the features of the Convolutional Block Attention Module results in a distinctive dual attention mechanism that is critical to the methodology. This mechanism emphasizes essential features in both the time domain and the time-frequency domain, improving the accuracy of fault diagnosis. Verification with on-site data underscores the preeminence of the approach over existing models, signaling improved reliability and accuracy in diagnosing faults in drilling pumps. This meticulous approach offers promising advances in the study and application of fault diagnosis in energy equipment, demonstrating increased efficiency and refined accuracy. •A novel Parallel Deep Neural Network-Based Fault Diagnosis Framework is proposed.•Time and time-frequency domains of signals are extracted and fused for Fault Diagnosis.•Integrating the Transformer with CBAM to consider the essential features of signals.</description><subject>Deep learning</subject><subject>Drilling pump</subject><subject>Fault diagnosis</subject><subject>Strain signal</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKuvIHmBqckkk8zsLMU_KOii-5CfO0NqmgnJVPHtHamuXR3uuZzD4UPolpIVJVTc7VcQB52S9qua1Hw2WyLpGVrQVrJKSNGdowXpmrqinRSX6KqUPSGEtVws0NsaJ511CBCwA0g4wnE-Z5k-x_yO-zFjHycIwQ8QJ9zrY5iw83qIY_EFjz122c_fOOB0PKRyjS56HQrc_OoS7R4fdpvnavv69LJZbyvLBJmqXtrGGGNBEweWt9bVDWNta7hrXCe7jgLhxFKhTeMId0YboR2VDXeW1ZQtkTjV2jyWkqFXKfuDzl-KEvWDRe3VHxb1g0WdsMzB-1MQ5nEfHrIq1kO04HwGOyk3-v8qvgGRiXD-</recordid><startdate>202407</startdate><enddate>202407</enddate><creator>Guo, Junyu</creator><creator>Yang, Yulai</creator><creator>Li, He</creator><creator>Dai, Le</creator><creator>Huang, Bangkui</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9462-9501</orcidid><orcidid>https://orcid.org/0000-0002-0711-4954</orcidid><orcidid>https://orcid.org/0000-0001-6429-9097</orcidid></search><sort><creationdate>202407</creationdate><title>A parallel deep neural network for intelligent fault diagnosis of drilling pumps</title><author>Guo, Junyu ; Yang, Yulai ; Li, He ; Dai, Le ; Huang, Bangkui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-f7c5bbbcea0dec48cd253388b4d5d97991e040c16ab5d04dbab6ad1754dc3213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Deep learning</topic><topic>Drilling pump</topic><topic>Fault diagnosis</topic><topic>Strain signal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Junyu</creatorcontrib><creatorcontrib>Yang, Yulai</creatorcontrib><creatorcontrib>Li, He</creatorcontrib><creatorcontrib>Dai, Le</creatorcontrib><creatorcontrib>Huang, Bangkui</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Junyu</au><au>Yang, Yulai</au><au>Li, He</au><au>Dai, Le</au><au>Huang, Bangkui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parallel deep neural network for intelligent fault diagnosis of drilling pumps</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2024-07</date><risdate>2024</risdate><volume>133</volume><spage>108071</spage><pages>108071-</pages><artnum>108071</artnum><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>This paper introduces a novel parallel deep neural network for fault diagnosis of drilling pumps. It integrates the Convolutional Block Attention Module with the AlexNet and synchronizes with the Anomaly Transformer model to delve meticulously into both the time and time-frequency domains of signals. The method prioritizes the singular extraction and subsequent amalgamation of features, facilitating a detailed view of diagnostic data and mitigating the risk of interference and overfitting. The integration of the anomaly attention of the Anomaly Transformer with the features of the Convolutional Block Attention Module results in a distinctive dual attention mechanism that is critical to the methodology. This mechanism emphasizes essential features in both the time domain and the time-frequency domain, improving the accuracy of fault diagnosis. Verification with on-site data underscores the preeminence of the approach over existing models, signaling improved reliability and accuracy in diagnosing faults in drilling pumps. This meticulous approach offers promising advances in the study and application of fault diagnosis in energy equipment, demonstrating increased efficiency and refined accuracy. •A novel Parallel Deep Neural Network-Based Fault Diagnosis Framework is proposed.•Time and time-frequency domains of signals are extracted and fused for Fault Diagnosis.•Integrating the Transformer with CBAM to consider the essential features of signals.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2024.108071</doi><orcidid>https://orcid.org/0000-0001-9462-9501</orcidid><orcidid>https://orcid.org/0000-0002-0711-4954</orcidid><orcidid>https://orcid.org/0000-0001-6429-9097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0952-1976
ispartof Engineering applications of artificial intelligence, 2024-07, Vol.133, p.108071, Article 108071
issn 0952-1976
1873-6769
language eng
recordid cdi_crossref_primary_10_1016_j_engappai_2024_108071
source ScienceDirect Freedom Collection 2022-2024
subjects Deep learning
Drilling pump
Fault diagnosis
Strain signal
title A parallel deep neural network for intelligent fault diagnosis of drilling pumps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A10%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parallel%20deep%20neural%20network%20for%20intelligent%20fault%20diagnosis%20of%20drilling%20pumps&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Guo,%20Junyu&rft.date=2024-07&rft.volume=133&rft.spage=108071&rft.pages=108071-&rft.artnum=108071&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2024.108071&rft_dat=%3Celsevier_cross%3ES095219762400229X%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c360t-f7c5bbbcea0dec48cd253388b4d5d97991e040c16ab5d04dbab6ad1754dc3213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true