Loading…

Nonlinear hierarchical editing: A powerful framework for face editing

Hierarchical Generative Adversarial Networks (GANs) have achieved considerable success in generating images, yet the task of editing these images in an interpretable, prominent, and disentangled manner remains a challenging issue. In this study, we introduce a novel hierarchical editing methodology...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence 2024-09, Vol.135, p.108706, Article 108706
Main Authors: Niu, Yongjie, Zhou, Pengbo, Chi, Hao, Zhou, Mingquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c189t-946f946e3c2a30a03af44ae9ff5443b31d88d625fb956f97c9ee6bf9bd0924643
container_end_page
container_issue
container_start_page 108706
container_title Engineering applications of artificial intelligence
container_volume 135
creator Niu, Yongjie
Zhou, Pengbo
Chi, Hao
Zhou, Mingquan
description Hierarchical Generative Adversarial Networks (GANs) have achieved considerable success in generating images, yet the task of editing these images in an interpretable, prominent, and disentangled manner remains a challenging issue. In this study, we introduce a novel hierarchical editing methodology that leverages nonlinear editing paths within GAN models. Nonlinear editing paths are identified in the GAN’s latent space in an unsupervised manner, and attribute evaluators are employed to automatically discern the semantics associated with these paths. Subsequently, a layer-by-layer scoring technique is utilized to pinpoint the most pertinent layer for the editing path. The latent code navigates a nonlinear path reflective of a specific semantic, with modifications confined to layers most germane to the identified semantic. This hierarchical editing strategy results in significant, disentangled, and commutative editing outcomes. Compared to the current state-of-the-art, our approach reduces side effect error by 20% to 39% in attribute disentanglement and commutativity error by 30% to 60% in continuous editing.
doi_str_mv 10.1016/j.engappai.2024.108706
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_engappai_2024_108706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197624008649</els_id><sourcerecordid>S0952197624008649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-946f946e3c2a30a03af44ae9ff5443b31d88d625fb956f97c9ee6bf9bd0924643</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCsgvkGLHjhNzoqrKj1TBBc7Wxlm3DmkSOYGKt8dV6JnDaqXVzGj2I-SWswVnXN3VC2y30PfgFylLZTwWOVNnZMaLXCQqV_qczJjO0oTrXF2Sq2GoGWOikGpG1q9d2_gWIdCdxwDB7ryFhmLlR99u7-mS9t0Bg_tqqAuwx0MXPqnrAnVg8SS7JhcOmgFv_vacfDyu31fPyebt6WW13CSWF3pMtFQuDgqbgmDABDgpAbVzmZSiFLwqikqlmSt1FpW51YiqdLqsmE6lkmJO1JRrQzcMAZ3pg99D-DGcmSMMU5sTDHOEYSYY0fgwGTG2-46PmsF6bG3sH9COpur8fxG_u1VsJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear hierarchical editing: A powerful framework for face editing</title><source>ScienceDirect Freedom Collection</source><creator>Niu, Yongjie ; Zhou, Pengbo ; Chi, Hao ; Zhou, Mingquan</creator><creatorcontrib>Niu, Yongjie ; Zhou, Pengbo ; Chi, Hao ; Zhou, Mingquan</creatorcontrib><description>Hierarchical Generative Adversarial Networks (GANs) have achieved considerable success in generating images, yet the task of editing these images in an interpretable, prominent, and disentangled manner remains a challenging issue. In this study, we introduce a novel hierarchical editing methodology that leverages nonlinear editing paths within GAN models. Nonlinear editing paths are identified in the GAN’s latent space in an unsupervised manner, and attribute evaluators are employed to automatically discern the semantics associated with these paths. Subsequently, a layer-by-layer scoring technique is utilized to pinpoint the most pertinent layer for the editing path. The latent code navigates a nonlinear path reflective of a specific semantic, with modifications confined to layers most germane to the identified semantic. This hierarchical editing strategy results in significant, disentangled, and commutative editing outcomes. Compared to the current state-of-the-art, our approach reduces side effect error by 20% to 39% in attribute disentanglement and commutativity error by 30% to 60% in continuous editing.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2024.108706</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Attribute entanglement ; Continuous editing ; Effective attribute change magnitude ; Hierarchical editing ; Model collapse ; Nonlinear editing path</subject><ispartof>Engineering applications of artificial intelligence, 2024-09, Vol.135, p.108706, Article 108706</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c189t-946f946e3c2a30a03af44ae9ff5443b31d88d625fb956f97c9ee6bf9bd0924643</cites><orcidid>0000-0001-9266-1444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Niu, Yongjie</creatorcontrib><creatorcontrib>Zhou, Pengbo</creatorcontrib><creatorcontrib>Chi, Hao</creatorcontrib><creatorcontrib>Zhou, Mingquan</creatorcontrib><title>Nonlinear hierarchical editing: A powerful framework for face editing</title><title>Engineering applications of artificial intelligence</title><description>Hierarchical Generative Adversarial Networks (GANs) have achieved considerable success in generating images, yet the task of editing these images in an interpretable, prominent, and disentangled manner remains a challenging issue. In this study, we introduce a novel hierarchical editing methodology that leverages nonlinear editing paths within GAN models. Nonlinear editing paths are identified in the GAN’s latent space in an unsupervised manner, and attribute evaluators are employed to automatically discern the semantics associated with these paths. Subsequently, a layer-by-layer scoring technique is utilized to pinpoint the most pertinent layer for the editing path. The latent code navigates a nonlinear path reflective of a specific semantic, with modifications confined to layers most germane to the identified semantic. This hierarchical editing strategy results in significant, disentangled, and commutative editing outcomes. Compared to the current state-of-the-art, our approach reduces side effect error by 20% to 39% in attribute disentanglement and commutativity error by 30% to 60% in continuous editing.</description><subject>Attribute entanglement</subject><subject>Continuous editing</subject><subject>Effective attribute change magnitude</subject><subject>Hierarchical editing</subject><subject>Model collapse</subject><subject>Nonlinear editing path</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCsgvkGLHjhNzoqrKj1TBBc7Wxlm3DmkSOYGKt8dV6JnDaqXVzGj2I-SWswVnXN3VC2y30PfgFylLZTwWOVNnZMaLXCQqV_qczJjO0oTrXF2Sq2GoGWOikGpG1q9d2_gWIdCdxwDB7ryFhmLlR99u7-mS9t0Bg_tqqAuwx0MXPqnrAnVg8SS7JhcOmgFv_vacfDyu31fPyebt6WW13CSWF3pMtFQuDgqbgmDABDgpAbVzmZSiFLwqikqlmSt1FpW51YiqdLqsmE6lkmJO1JRrQzcMAZ3pg99D-DGcmSMMU5sTDHOEYSYY0fgwGTG2-46PmsF6bG3sH9COpur8fxG_u1VsJg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Niu, Yongjie</creator><creator>Zhou, Pengbo</creator><creator>Chi, Hao</creator><creator>Zhou, Mingquan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9266-1444</orcidid></search><sort><creationdate>202409</creationdate><title>Nonlinear hierarchical editing: A powerful framework for face editing</title><author>Niu, Yongjie ; Zhou, Pengbo ; Chi, Hao ; Zhou, Mingquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-946f946e3c2a30a03af44ae9ff5443b31d88d625fb956f97c9ee6bf9bd0924643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attribute entanglement</topic><topic>Continuous editing</topic><topic>Effective attribute change magnitude</topic><topic>Hierarchical editing</topic><topic>Model collapse</topic><topic>Nonlinear editing path</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Yongjie</creatorcontrib><creatorcontrib>Zhou, Pengbo</creatorcontrib><creatorcontrib>Chi, Hao</creatorcontrib><creatorcontrib>Zhou, Mingquan</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Yongjie</au><au>Zhou, Pengbo</au><au>Chi, Hao</au><au>Zhou, Mingquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear hierarchical editing: A powerful framework for face editing</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2024-09</date><risdate>2024</risdate><volume>135</volume><spage>108706</spage><pages>108706-</pages><artnum>108706</artnum><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>Hierarchical Generative Adversarial Networks (GANs) have achieved considerable success in generating images, yet the task of editing these images in an interpretable, prominent, and disentangled manner remains a challenging issue. In this study, we introduce a novel hierarchical editing methodology that leverages nonlinear editing paths within GAN models. Nonlinear editing paths are identified in the GAN’s latent space in an unsupervised manner, and attribute evaluators are employed to automatically discern the semantics associated with these paths. Subsequently, a layer-by-layer scoring technique is utilized to pinpoint the most pertinent layer for the editing path. The latent code navigates a nonlinear path reflective of a specific semantic, with modifications confined to layers most germane to the identified semantic. This hierarchical editing strategy results in significant, disentangled, and commutative editing outcomes. Compared to the current state-of-the-art, our approach reduces side effect error by 20% to 39% in attribute disentanglement and commutativity error by 30% to 60% in continuous editing.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2024.108706</doi><orcidid>https://orcid.org/0000-0001-9266-1444</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0952-1976
ispartof Engineering applications of artificial intelligence, 2024-09, Vol.135, p.108706, Article 108706
issn 0952-1976
1873-6769
language eng
recordid cdi_crossref_primary_10_1016_j_engappai_2024_108706
source ScienceDirect Freedom Collection
subjects Attribute entanglement
Continuous editing
Effective attribute change magnitude
Hierarchical editing
Model collapse
Nonlinear editing path
title Nonlinear hierarchical editing: A powerful framework for face editing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20hierarchical%20editing:%20A%20powerful%20framework%20for%20face%20editing&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Niu,%20Yongjie&rft.date=2024-09&rft.volume=135&rft.spage=108706&rft.pages=108706-&rft.artnum=108706&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2024.108706&rft_dat=%3Celsevier_cross%3ES0952197624008649%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c189t-946f946e3c2a30a03af44ae9ff5443b31d88d625fb956f97c9ee6bf9bd0924643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true