Loading…
Nonlinear hierarchical editing: A powerful framework for face editing
Hierarchical Generative Adversarial Networks (GANs) have achieved considerable success in generating images, yet the task of editing these images in an interpretable, prominent, and disentangled manner remains a challenging issue. In this study, we introduce a novel hierarchical editing methodology...
Saved in:
Published in: | Engineering applications of artificial intelligence 2024-09, Vol.135, p.108706, Article 108706 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c189t-946f946e3c2a30a03af44ae9ff5443b31d88d625fb956f97c9ee6bf9bd0924643 |
container_end_page | |
container_issue | |
container_start_page | 108706 |
container_title | Engineering applications of artificial intelligence |
container_volume | 135 |
creator | Niu, Yongjie Zhou, Pengbo Chi, Hao Zhou, Mingquan |
description | Hierarchical Generative Adversarial Networks (GANs) have achieved considerable success in generating images, yet the task of editing these images in an interpretable, prominent, and disentangled manner remains a challenging issue. In this study, we introduce a novel hierarchical editing methodology that leverages nonlinear editing paths within GAN models. Nonlinear editing paths are identified in the GAN’s latent space in an unsupervised manner, and attribute evaluators are employed to automatically discern the semantics associated with these paths. Subsequently, a layer-by-layer scoring technique is utilized to pinpoint the most pertinent layer for the editing path. The latent code navigates a nonlinear path reflective of a specific semantic, with modifications confined to layers most germane to the identified semantic. This hierarchical editing strategy results in significant, disentangled, and commutative editing outcomes. Compared to the current state-of-the-art, our approach reduces side effect error by 20% to 39% in attribute disentanglement and commutativity error by 30% to 60% in continuous editing. |
doi_str_mv | 10.1016/j.engappai.2024.108706 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_engappai_2024_108706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0952197624008649</els_id><sourcerecordid>S0952197624008649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c189t-946f946e3c2a30a03af44ae9ff5443b31d88d625fb956f97c9ee6bf9bd0924643</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwCsgvkGLHjhNzoqrKj1TBBc7Wxlm3DmkSOYGKt8dV6JnDaqXVzGj2I-SWswVnXN3VC2y30PfgFylLZTwWOVNnZMaLXCQqV_qczJjO0oTrXF2Sq2GoGWOikGpG1q9d2_gWIdCdxwDB7ryFhmLlR99u7-mS9t0Bg_tqqAuwx0MXPqnrAnVg8SS7JhcOmgFv_vacfDyu31fPyebt6WW13CSWF3pMtFQuDgqbgmDABDgpAbVzmZSiFLwqikqlmSt1FpW51YiqdLqsmE6lkmJO1JRrQzcMAZ3pg99D-DGcmSMMU5sTDHOEYSYY0fgwGTG2-46PmsF6bG3sH9COpur8fxG_u1VsJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear hierarchical editing: A powerful framework for face editing</title><source>ScienceDirect Freedom Collection</source><creator>Niu, Yongjie ; Zhou, Pengbo ; Chi, Hao ; Zhou, Mingquan</creator><creatorcontrib>Niu, Yongjie ; Zhou, Pengbo ; Chi, Hao ; Zhou, Mingquan</creatorcontrib><description>Hierarchical Generative Adversarial Networks (GANs) have achieved considerable success in generating images, yet the task of editing these images in an interpretable, prominent, and disentangled manner remains a challenging issue. In this study, we introduce a novel hierarchical editing methodology that leverages nonlinear editing paths within GAN models. Nonlinear editing paths are identified in the GAN’s latent space in an unsupervised manner, and attribute evaluators are employed to automatically discern the semantics associated with these paths. Subsequently, a layer-by-layer scoring technique is utilized to pinpoint the most pertinent layer for the editing path. The latent code navigates a nonlinear path reflective of a specific semantic, with modifications confined to layers most germane to the identified semantic. This hierarchical editing strategy results in significant, disentangled, and commutative editing outcomes. Compared to the current state-of-the-art, our approach reduces side effect error by 20% to 39% in attribute disentanglement and commutativity error by 30% to 60% in continuous editing.</description><identifier>ISSN: 0952-1976</identifier><identifier>EISSN: 1873-6769</identifier><identifier>DOI: 10.1016/j.engappai.2024.108706</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Attribute entanglement ; Continuous editing ; Effective attribute change magnitude ; Hierarchical editing ; Model collapse ; Nonlinear editing path</subject><ispartof>Engineering applications of artificial intelligence, 2024-09, Vol.135, p.108706, Article 108706</ispartof><rights>2024 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c189t-946f946e3c2a30a03af44ae9ff5443b31d88d625fb956f97c9ee6bf9bd0924643</cites><orcidid>0000-0001-9266-1444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Niu, Yongjie</creatorcontrib><creatorcontrib>Zhou, Pengbo</creatorcontrib><creatorcontrib>Chi, Hao</creatorcontrib><creatorcontrib>Zhou, Mingquan</creatorcontrib><title>Nonlinear hierarchical editing: A powerful framework for face editing</title><title>Engineering applications of artificial intelligence</title><description>Hierarchical Generative Adversarial Networks (GANs) have achieved considerable success in generating images, yet the task of editing these images in an interpretable, prominent, and disentangled manner remains a challenging issue. In this study, we introduce a novel hierarchical editing methodology that leverages nonlinear editing paths within GAN models. Nonlinear editing paths are identified in the GAN’s latent space in an unsupervised manner, and attribute evaluators are employed to automatically discern the semantics associated with these paths. Subsequently, a layer-by-layer scoring technique is utilized to pinpoint the most pertinent layer for the editing path. The latent code navigates a nonlinear path reflective of a specific semantic, with modifications confined to layers most germane to the identified semantic. This hierarchical editing strategy results in significant, disentangled, and commutative editing outcomes. Compared to the current state-of-the-art, our approach reduces side effect error by 20% to 39% in attribute disentanglement and commutativity error by 30% to 60% in continuous editing.</description><subject>Attribute entanglement</subject><subject>Continuous editing</subject><subject>Effective attribute change magnitude</subject><subject>Hierarchical editing</subject><subject>Model collapse</subject><subject>Nonlinear editing path</subject><issn>0952-1976</issn><issn>1873-6769</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwCsgvkGLHjhNzoqrKj1TBBc7Wxlm3DmkSOYGKt8dV6JnDaqXVzGj2I-SWswVnXN3VC2y30PfgFylLZTwWOVNnZMaLXCQqV_qczJjO0oTrXF2Sq2GoGWOikGpG1q9d2_gWIdCdxwDB7ryFhmLlR99u7-mS9t0Bg_tqqAuwx0MXPqnrAnVg8SS7JhcOmgFv_vacfDyu31fPyebt6WW13CSWF3pMtFQuDgqbgmDABDgpAbVzmZSiFLwqikqlmSt1FpW51YiqdLqsmE6lkmJO1JRrQzcMAZ3pg99D-DGcmSMMU5sTDHOEYSYY0fgwGTG2-46PmsF6bG3sH9COpur8fxG_u1VsJg</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Niu, Yongjie</creator><creator>Zhou, Pengbo</creator><creator>Chi, Hao</creator><creator>Zhou, Mingquan</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9266-1444</orcidid></search><sort><creationdate>202409</creationdate><title>Nonlinear hierarchical editing: A powerful framework for face editing</title><author>Niu, Yongjie ; Zhou, Pengbo ; Chi, Hao ; Zhou, Mingquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c189t-946f946e3c2a30a03af44ae9ff5443b31d88d625fb956f97c9ee6bf9bd0924643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Attribute entanglement</topic><topic>Continuous editing</topic><topic>Effective attribute change magnitude</topic><topic>Hierarchical editing</topic><topic>Model collapse</topic><topic>Nonlinear editing path</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Yongjie</creatorcontrib><creatorcontrib>Zhou, Pengbo</creatorcontrib><creatorcontrib>Chi, Hao</creatorcontrib><creatorcontrib>Zhou, Mingquan</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering applications of artificial intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Yongjie</au><au>Zhou, Pengbo</au><au>Chi, Hao</au><au>Zhou, Mingquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear hierarchical editing: A powerful framework for face editing</atitle><jtitle>Engineering applications of artificial intelligence</jtitle><date>2024-09</date><risdate>2024</risdate><volume>135</volume><spage>108706</spage><pages>108706-</pages><artnum>108706</artnum><issn>0952-1976</issn><eissn>1873-6769</eissn><abstract>Hierarchical Generative Adversarial Networks (GANs) have achieved considerable success in generating images, yet the task of editing these images in an interpretable, prominent, and disentangled manner remains a challenging issue. In this study, we introduce a novel hierarchical editing methodology that leverages nonlinear editing paths within GAN models. Nonlinear editing paths are identified in the GAN’s latent space in an unsupervised manner, and attribute evaluators are employed to automatically discern the semantics associated with these paths. Subsequently, a layer-by-layer scoring technique is utilized to pinpoint the most pertinent layer for the editing path. The latent code navigates a nonlinear path reflective of a specific semantic, with modifications confined to layers most germane to the identified semantic. This hierarchical editing strategy results in significant, disentangled, and commutative editing outcomes. Compared to the current state-of-the-art, our approach reduces side effect error by 20% to 39% in attribute disentanglement and commutativity error by 30% to 60% in continuous editing.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engappai.2024.108706</doi><orcidid>https://orcid.org/0000-0001-9266-1444</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0952-1976 |
ispartof | Engineering applications of artificial intelligence, 2024-09, Vol.135, p.108706, Article 108706 |
issn | 0952-1976 1873-6769 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_engappai_2024_108706 |
source | ScienceDirect Freedom Collection |
subjects | Attribute entanglement Continuous editing Effective attribute change magnitude Hierarchical editing Model collapse Nonlinear editing path |
title | Nonlinear hierarchical editing: A powerful framework for face editing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20hierarchical%20editing:%20A%20powerful%20framework%20for%20face%20editing&rft.jtitle=Engineering%20applications%20of%20artificial%20intelligence&rft.au=Niu,%20Yongjie&rft.date=2024-09&rft.volume=135&rft.spage=108706&rft.pages=108706-&rft.artnum=108706&rft.issn=0952-1976&rft.eissn=1873-6769&rft_id=info:doi/10.1016/j.engappai.2024.108706&rft_dat=%3Celsevier_cross%3ES0952197624008649%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c189t-946f946e3c2a30a03af44ae9ff5443b31d88d625fb956f97c9ee6bf9bd0924643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |