Loading…
Fatigue life prediction of a supercritical steam turbine rotor based on neural networks
•A data-driven life monitoring system for key components of steam turbine is proposed.•A FEM database is constructed for the neural network training.•The Neuber rule and trained network are combined for fatigue life prediction.•The framework provides new solutions for life damage monitoring of compl...
Saved in:
Published in: | Engineering failure analysis 2021-09, Vol.127, p.105435, Article 105435 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-fbe37ac3690de19ee89ccdbac0b7f2f2b2031e31d5dd179e9385e7584fd46bd43 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-fbe37ac3690de19ee89ccdbac0b7f2f2b2031e31d5dd179e9385e7584fd46bd43 |
container_end_page | |
container_issue | |
container_start_page | 105435 |
container_title | Engineering failure analysis |
container_volume | 127 |
creator | Zhao, Xiang Ru, Dongheng Wang, Peng Gan, Lei Wu, Hao Zhong, Zheng |
description | •A data-driven life monitoring system for key components of steam turbine is proposed.•A FEM database is constructed for the neural network training.•The Neuber rule and trained network are combined for fatigue life prediction.•The framework provides new solutions for life damage monitoring of complex systems.
The safety and stability of rotors are significantly important for smooth operations of steam turbines. To predict the fatigue life of a 350 MW supercritical steam turbine rotor online, a data-driven based neural network is proposed in this paper. Finite element analysis is employed to determine the danger zones of the whole rotor and then a large sample dataset consisted of temperatures and stresses is established for subsequent neural network training. Different from the traditional thermo-elasto-plastic or finite element methods, the proposed approach can effectively calculate temperatures and stresses at the danger zones by inputting measured parameters. The Neuber rule and Manson-Coffin equation are used to estimate the fatigue life of the rotor. It is shown that the proposed neural network-based method can assess the operating status of steam turbine during different cold startups and provide a feasible online health monitoring methodology for steam turbine rotor, without dealing with the quite challenging thermo-mechanical analysis. |
doi_str_mv | 10.1016/j.engfailanal.2021.105435 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_engfailanal_2021_105435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350630721002958</els_id><sourcerecordid>S1350630721002958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-fbe37ac3690de19ee89ccdbac0b7f2f2b2031e31d5dd179e9385e7584fd46bd43</originalsourceid><addsrcrecordid>eNqNkM1KAzEUhYMoWKvvEB9gxvzMTCZLKVaFghvFZcjPTUmdTkqSUXx7p9SFS1fncjjncPkQuqWkpoR2d7saxq3XYdCjHmpGGJ39tuHtGVrQXvCKyo6ezzdvSdVxIi7RVc47Qohgki7Q-1qXsJ0AD8EDPiRwwZYQRxw91jhPB0g2hRKsHnAuoPe4TMmEEXCKJSZsdAaH5_wIU5ozI5SvmD7yNbrweshw86tL9LZ-eF09VZuXx-fV_aaynNFSeQNcaMs7SRxQCdBLa53RlhjhmWeGEU6BU9c6R4UEyfsWRNs33jWdcQ1fInnatSnmnMCrQwp7nb4VJepISO3UH0LqSEidCM3d1akL84OfAZLKNsBoZwYJbFEuhn-s_ABAIHd3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fatigue life prediction of a supercritical steam turbine rotor based on neural networks</title><source>ScienceDirect Freedom Collection</source><creator>Zhao, Xiang ; Ru, Dongheng ; Wang, Peng ; Gan, Lei ; Wu, Hao ; Zhong, Zheng</creator><creatorcontrib>Zhao, Xiang ; Ru, Dongheng ; Wang, Peng ; Gan, Lei ; Wu, Hao ; Zhong, Zheng</creatorcontrib><description>•A data-driven life monitoring system for key components of steam turbine is proposed.•A FEM database is constructed for the neural network training.•The Neuber rule and trained network are combined for fatigue life prediction.•The framework provides new solutions for life damage monitoring of complex systems.
The safety and stability of rotors are significantly important for smooth operations of steam turbines. To predict the fatigue life of a 350 MW supercritical steam turbine rotor online, a data-driven based neural network is proposed in this paper. Finite element analysis is employed to determine the danger zones of the whole rotor and then a large sample dataset consisted of temperatures and stresses is established for subsequent neural network training. Different from the traditional thermo-elasto-plastic or finite element methods, the proposed approach can effectively calculate temperatures and stresses at the danger zones by inputting measured parameters. The Neuber rule and Manson-Coffin equation are used to estimate the fatigue life of the rotor. It is shown that the proposed neural network-based method can assess the operating status of steam turbine during different cold startups and provide a feasible online health monitoring methodology for steam turbine rotor, without dealing with the quite challenging thermo-mechanical analysis.</description><identifier>ISSN: 1350-6307</identifier><identifier>EISSN: 1873-1961</identifier><identifier>DOI: 10.1016/j.engfailanal.2021.105435</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Fatigue life ; Finite element analysis ; Neural networks ; Steam turbine rotor</subject><ispartof>Engineering failure analysis, 2021-09, Vol.127, p.105435, Article 105435</ispartof><rights>2021 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-fbe37ac3690de19ee89ccdbac0b7f2f2b2031e31d5dd179e9385e7584fd46bd43</citedby><cites>FETCH-LOGICAL-c321t-fbe37ac3690de19ee89ccdbac0b7f2f2b2031e31d5dd179e9385e7584fd46bd43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhao, Xiang</creatorcontrib><creatorcontrib>Ru, Dongheng</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Zhong, Zheng</creatorcontrib><title>Fatigue life prediction of a supercritical steam turbine rotor based on neural networks</title><title>Engineering failure analysis</title><description>•A data-driven life monitoring system for key components of steam turbine is proposed.•A FEM database is constructed for the neural network training.•The Neuber rule and trained network are combined for fatigue life prediction.•The framework provides new solutions for life damage monitoring of complex systems.
The safety and stability of rotors are significantly important for smooth operations of steam turbines. To predict the fatigue life of a 350 MW supercritical steam turbine rotor online, a data-driven based neural network is proposed in this paper. Finite element analysis is employed to determine the danger zones of the whole rotor and then a large sample dataset consisted of temperatures and stresses is established for subsequent neural network training. Different from the traditional thermo-elasto-plastic or finite element methods, the proposed approach can effectively calculate temperatures and stresses at the danger zones by inputting measured parameters. The Neuber rule and Manson-Coffin equation are used to estimate the fatigue life of the rotor. It is shown that the proposed neural network-based method can assess the operating status of steam turbine during different cold startups and provide a feasible online health monitoring methodology for steam turbine rotor, without dealing with the quite challenging thermo-mechanical analysis.</description><subject>Fatigue life</subject><subject>Finite element analysis</subject><subject>Neural networks</subject><subject>Steam turbine rotor</subject><issn>1350-6307</issn><issn>1873-1961</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkM1KAzEUhYMoWKvvEB9gxvzMTCZLKVaFghvFZcjPTUmdTkqSUXx7p9SFS1fncjjncPkQuqWkpoR2d7saxq3XYdCjHmpGGJ39tuHtGVrQXvCKyo6ezzdvSdVxIi7RVc47Qohgki7Q-1qXsJ0AD8EDPiRwwZYQRxw91jhPB0g2hRKsHnAuoPe4TMmEEXCKJSZsdAaH5_wIU5ozI5SvmD7yNbrweshw86tL9LZ-eF09VZuXx-fV_aaynNFSeQNcaMs7SRxQCdBLa53RlhjhmWeGEU6BU9c6R4UEyfsWRNs33jWdcQ1fInnatSnmnMCrQwp7nb4VJepISO3UH0LqSEidCM3d1akL84OfAZLKNsBoZwYJbFEuhn-s_ABAIHd3</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Zhao, Xiang</creator><creator>Ru, Dongheng</creator><creator>Wang, Peng</creator><creator>Gan, Lei</creator><creator>Wu, Hao</creator><creator>Zhong, Zheng</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>Fatigue life prediction of a supercritical steam turbine rotor based on neural networks</title><author>Zhao, Xiang ; Ru, Dongheng ; Wang, Peng ; Gan, Lei ; Wu, Hao ; Zhong, Zheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-fbe37ac3690de19ee89ccdbac0b7f2f2b2031e31d5dd179e9385e7584fd46bd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Fatigue life</topic><topic>Finite element analysis</topic><topic>Neural networks</topic><topic>Steam turbine rotor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xiang</creatorcontrib><creatorcontrib>Ru, Dongheng</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Gan, Lei</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Zhong, Zheng</creatorcontrib><collection>CrossRef</collection><jtitle>Engineering failure analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Xiang</au><au>Ru, Dongheng</au><au>Wang, Peng</au><au>Gan, Lei</au><au>Wu, Hao</au><au>Zhong, Zheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fatigue life prediction of a supercritical steam turbine rotor based on neural networks</atitle><jtitle>Engineering failure analysis</jtitle><date>2021-09</date><risdate>2021</risdate><volume>127</volume><spage>105435</spage><pages>105435-</pages><artnum>105435</artnum><issn>1350-6307</issn><eissn>1873-1961</eissn><abstract>•A data-driven life monitoring system for key components of steam turbine is proposed.•A FEM database is constructed for the neural network training.•The Neuber rule and trained network are combined for fatigue life prediction.•The framework provides new solutions for life damage monitoring of complex systems.
The safety and stability of rotors are significantly important for smooth operations of steam turbines. To predict the fatigue life of a 350 MW supercritical steam turbine rotor online, a data-driven based neural network is proposed in this paper. Finite element analysis is employed to determine the danger zones of the whole rotor and then a large sample dataset consisted of temperatures and stresses is established for subsequent neural network training. Different from the traditional thermo-elasto-plastic or finite element methods, the proposed approach can effectively calculate temperatures and stresses at the danger zones by inputting measured parameters. The Neuber rule and Manson-Coffin equation are used to estimate the fatigue life of the rotor. It is shown that the proposed neural network-based method can assess the operating status of steam turbine during different cold startups and provide a feasible online health monitoring methodology for steam turbine rotor, without dealing with the quite challenging thermo-mechanical analysis.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engfailanal.2021.105435</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-6307 |
ispartof | Engineering failure analysis, 2021-09, Vol.127, p.105435, Article 105435 |
issn | 1350-6307 1873-1961 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_engfailanal_2021_105435 |
source | ScienceDirect Freedom Collection |
subjects | Fatigue life Finite element analysis Neural networks Steam turbine rotor |
title | Fatigue life prediction of a supercritical steam turbine rotor based on neural networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fatigue%20life%20prediction%20of%20a%20supercritical%20steam%20turbine%20rotor%20based%20on%20neural%20networks&rft.jtitle=Engineering%20failure%20analysis&rft.au=Zhao,%20Xiang&rft.date=2021-09&rft.volume=127&rft.spage=105435&rft.pages=105435-&rft.artnum=105435&rft.issn=1350-6307&rft.eissn=1873-1961&rft_id=info:doi/10.1016/j.engfailanal.2021.105435&rft_dat=%3Celsevier_cross%3ES1350630721002958%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-fbe37ac3690de19ee89ccdbac0b7f2f2b2031e31d5dd179e9385e7584fd46bd43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |