Loading…

Geometrical digital twins of masonry structures for documentation and structural assessment using machine learning

•Automatic development of geometrical digital twins for structural inspection and survey of masonry structures.•Use made of computer vision and machine learning to automate the process.•Automatic crack identification and acquisition of metrics of cracks from images.•Feature detection and feature ext...

Full description

Saved in:
Bibliographic Details
Published in:Engineering structures 2023-01, Vol.275, p.115256, Article 115256
Main Authors: Loverdos, Dimitrios, Sarhosis, Vasilis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-d165550f4729ba557fc99f720b0b88fddc7d8a303fae1d63a2ecbfdc7cb91f573
cites cdi_FETCH-LOGICAL-c364t-d165550f4729ba557fc99f720b0b88fddc7d8a303fae1d63a2ecbfdc7cb91f573
container_end_page
container_issue
container_start_page 115256
container_title Engineering structures
container_volume 275
creator Loverdos, Dimitrios
Sarhosis, Vasilis
description •Automatic development of geometrical digital twins for structural inspection and survey of masonry structures.•Use made of computer vision and machine learning to automate the process.•Automatic crack identification and acquisition of metrics of cracks from images.•Feature detection and feature extraction methodology used to identify background in images. The generation of numerical models for masonry structures is a timely and costly procedure since it requires the discretization of a large quantity of smaller particles. Similarly, traditional visual inspection involves the cautious consideration of each element on a masonry construction. In both cases, each brick element needs to be considered individually. The work presented in this document aims to alleviate the issues arising from documenting individual masonry units and cracks on a structure using computer vision and convolutional neural networks (CNN). In particular, for the first time a dynamic workflow has been developed in which masonry units and cracks in masonry structures are automatically detected and used for the development of a complete geometric digital twin. The outcome is a collection of space coordinates and geometrical objects that represent the masonry fabric entity and allow the comprehension of the object for documentation and structural assessment. This interoperability between architectural, structural, and structural analysis models paves the way to use engineering to create a smarter, safer, and more sustainable future for our existing infrastructures.
doi_str_mv 10.1016/j.engstruct.2022.115256
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_engstruct_2022_115256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0141029622013323</els_id><sourcerecordid>S0141029622013323</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-d165550f4729ba557fc99f720b0b88fddc7d8a303fae1d63a2ecbfdc7cb91f573</originalsourceid><addsrcrecordid>eNqFkM1KAzEUhYMoWKvPYF5gxvw0k5llKf5BwY2uQya5qSmdRJIZpW9vyki3rg6ce87h8iF0T0lNCW0e9jWEXR7TZMaaEcZqSgUTzQVa0FbySnLGL9GC0BWtCOuaa3ST854QwtqWLFB6hjjAmLzRB2z9zo9Fxx8fMo4ODzrHkI54np8SZOxiwjaaaYAw6tHHgHWw50Ap65wh59MZT9mHXRkxnz4APoBOoRi36MrpQ4a7P12ij6fH981LtX17ft2st5XhzWqsLG2EEMStJOt6LYR0puucZKQnfds6a420reaEOw3UNlwzML0rruk76oTkSyTnXZNizgmc-kp-0OmoKFEndGqvzujUCZ2a0ZXmem5Cee_bQ1LZeAgGrE9Qsjb6fzd-AZVRgS0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Geometrical digital twins of masonry structures for documentation and structural assessment using machine learning</title><source>Elsevier</source><creator>Loverdos, Dimitrios ; Sarhosis, Vasilis</creator><creatorcontrib>Loverdos, Dimitrios ; Sarhosis, Vasilis</creatorcontrib><description>•Automatic development of geometrical digital twins for structural inspection and survey of masonry structures.•Use made of computer vision and machine learning to automate the process.•Automatic crack identification and acquisition of metrics of cracks from images.•Feature detection and feature extraction methodology used to identify background in images. The generation of numerical models for masonry structures is a timely and costly procedure since it requires the discretization of a large quantity of smaller particles. Similarly, traditional visual inspection involves the cautious consideration of each element on a masonry construction. In both cases, each brick element needs to be considered individually. The work presented in this document aims to alleviate the issues arising from documenting individual masonry units and cracks on a structure using computer vision and convolutional neural networks (CNN). In particular, for the first time a dynamic workflow has been developed in which masonry units and cracks in masonry structures are automatically detected and used for the development of a complete geometric digital twin. The outcome is a collection of space coordinates and geometrical objects that represent the masonry fabric entity and allow the comprehension of the object for documentation and structural assessment. This interoperability between architectural, structural, and structural analysis models paves the way to use engineering to create a smarter, safer, and more sustainable future for our existing infrastructures.</description><identifier>ISSN: 0141-0296</identifier><identifier>EISSN: 1873-7323</identifier><identifier>DOI: 10.1016/j.engstruct.2022.115256</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Documentation ; Feature extraction ; Image processing ; Masonry ; Structural analysis ; Watershed transform segmentation</subject><ispartof>Engineering structures, 2023-01, Vol.275, p.115256, Article 115256</ispartof><rights>2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-d165550f4729ba557fc99f720b0b88fddc7d8a303fae1d63a2ecbfdc7cb91f573</citedby><cites>FETCH-LOGICAL-c364t-d165550f4729ba557fc99f720b0b88fddc7d8a303fae1d63a2ecbfdc7cb91f573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Loverdos, Dimitrios</creatorcontrib><creatorcontrib>Sarhosis, Vasilis</creatorcontrib><title>Geometrical digital twins of masonry structures for documentation and structural assessment using machine learning</title><title>Engineering structures</title><description>•Automatic development of geometrical digital twins for structural inspection and survey of masonry structures.•Use made of computer vision and machine learning to automate the process.•Automatic crack identification and acquisition of metrics of cracks from images.•Feature detection and feature extraction methodology used to identify background in images. The generation of numerical models for masonry structures is a timely and costly procedure since it requires the discretization of a large quantity of smaller particles. Similarly, traditional visual inspection involves the cautious consideration of each element on a masonry construction. In both cases, each brick element needs to be considered individually. The work presented in this document aims to alleviate the issues arising from documenting individual masonry units and cracks on a structure using computer vision and convolutional neural networks (CNN). In particular, for the first time a dynamic workflow has been developed in which masonry units and cracks in masonry structures are automatically detected and used for the development of a complete geometric digital twin. The outcome is a collection of space coordinates and geometrical objects that represent the masonry fabric entity and allow the comprehension of the object for documentation and structural assessment. This interoperability between architectural, structural, and structural analysis models paves the way to use engineering to create a smarter, safer, and more sustainable future for our existing infrastructures.</description><subject>Documentation</subject><subject>Feature extraction</subject><subject>Image processing</subject><subject>Masonry</subject><subject>Structural analysis</subject><subject>Watershed transform segmentation</subject><issn>0141-0296</issn><issn>1873-7323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEUhYMoWKvPYF5gxvw0k5llKf5BwY2uQya5qSmdRJIZpW9vyki3rg6ce87h8iF0T0lNCW0e9jWEXR7TZMaaEcZqSgUTzQVa0FbySnLGL9GC0BWtCOuaa3ST854QwtqWLFB6hjjAmLzRB2z9zo9Fxx8fMo4ODzrHkI54np8SZOxiwjaaaYAw6tHHgHWw50Ap65wh59MZT9mHXRkxnz4APoBOoRi36MrpQ4a7P12ij6fH981LtX17ft2st5XhzWqsLG2EEMStJOt6LYR0puucZKQnfds6a420reaEOw3UNlwzML0rruk76oTkSyTnXZNizgmc-kp-0OmoKFEndGqvzujUCZ2a0ZXmem5Cee_bQ1LZeAgGrE9Qsjb6fzd-AZVRgS0</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Loverdos, Dimitrios</creator><creator>Sarhosis, Vasilis</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230115</creationdate><title>Geometrical digital twins of masonry structures for documentation and structural assessment using machine learning</title><author>Loverdos, Dimitrios ; Sarhosis, Vasilis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-d165550f4729ba557fc99f720b0b88fddc7d8a303fae1d63a2ecbfdc7cb91f573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Documentation</topic><topic>Feature extraction</topic><topic>Image processing</topic><topic>Masonry</topic><topic>Structural analysis</topic><topic>Watershed transform segmentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loverdos, Dimitrios</creatorcontrib><creatorcontrib>Sarhosis, Vasilis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><jtitle>Engineering structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loverdos, Dimitrios</au><au>Sarhosis, Vasilis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical digital twins of masonry structures for documentation and structural assessment using machine learning</atitle><jtitle>Engineering structures</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>275</volume><spage>115256</spage><pages>115256-</pages><artnum>115256</artnum><issn>0141-0296</issn><eissn>1873-7323</eissn><abstract>•Automatic development of geometrical digital twins for structural inspection and survey of masonry structures.•Use made of computer vision and machine learning to automate the process.•Automatic crack identification and acquisition of metrics of cracks from images.•Feature detection and feature extraction methodology used to identify background in images. The generation of numerical models for masonry structures is a timely and costly procedure since it requires the discretization of a large quantity of smaller particles. Similarly, traditional visual inspection involves the cautious consideration of each element on a masonry construction. In both cases, each brick element needs to be considered individually. The work presented in this document aims to alleviate the issues arising from documenting individual masonry units and cracks on a structure using computer vision and convolutional neural networks (CNN). In particular, for the first time a dynamic workflow has been developed in which masonry units and cracks in masonry structures are automatically detected and used for the development of a complete geometric digital twin. The outcome is a collection of space coordinates and geometrical objects that represent the masonry fabric entity and allow the comprehension of the object for documentation and structural assessment. This interoperability between architectural, structural, and structural analysis models paves the way to use engineering to create a smarter, safer, and more sustainable future for our existing infrastructures.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.engstruct.2022.115256</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0141-0296
ispartof Engineering structures, 2023-01, Vol.275, p.115256, Article 115256
issn 0141-0296
1873-7323
language eng
recordid cdi_crossref_primary_10_1016_j_engstruct_2022_115256
source Elsevier
subjects Documentation
Feature extraction
Image processing
Masonry
Structural analysis
Watershed transform segmentation
title Geometrical digital twins of masonry structures for documentation and structural assessment using machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T00%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20digital%20twins%20of%20masonry%20structures%20for%20documentation%20and%20structural%20assessment%20using%20machine%20learning&rft.jtitle=Engineering%20structures&rft.au=Loverdos,%20Dimitrios&rft.date=2023-01-15&rft.volume=275&rft.spage=115256&rft.pages=115256-&rft.artnum=115256&rft.issn=0141-0296&rft.eissn=1873-7323&rft_id=info:doi/10.1016/j.engstruct.2022.115256&rft_dat=%3Celsevier_cross%3ES0141029622013323%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-d165550f4729ba557fc99f720b0b88fddc7d8a303fae1d63a2ecbfdc7cb91f573%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true