Loading…

Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills

The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challenging. With a focus on the on-site optical imaging o...

Full description

Saved in:
Bibliographic Details
Published in:Environmental pollution (1987) 2020-03, Vol.258, p.113688, Article 113688
Main Authors: Huang, Hui, Wang, Chao, Liu, Shuchang, Sun, Zehao, Zhang, Dejun, Liu, Caicai, Jiang, Yang, Zhan, Shuyue, Zhang, Haofei, Xu, Ren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3
cites cdi_FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3
container_end_page
container_issue
container_start_page 113688
container_title Environmental pollution (1987)
container_volume 258
creator Huang, Hui
Wang, Chao
Liu, Shuchang
Sun, Zehao
Zhang, Dejun
Liu, Caicai
Jiang, Yang
Zhan, Shuyue
Zhang, Haofei
Xu, Ren
description The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challenging. With a focus on the on-site optical imaging of HNS, this study explores the potential of single spectral imaging for HNS identification using the Faster R-CNN architecture. Images at 365 nm (narrow UV band), blue channel images (visible broadband of ∼400–600 nm), and RGB images of typical HNS (benzene, xylene, and palm oil) in different scenarios were studied with and without Faster R-CNN. Faster R-CNN was applied to locate and classify the HNS spills. The segmentation using Faster R-CNN-based methods and the original masking methods, including Otsu, Max entropy, and the local fuzzy thresholding method (LFTM), were investigated to explore the optimal wavelength and corresponding image processing method for the optical imaging of HNS. We also compared the classification and segmentation results of this study with our previously published studies on multispectral and whole spectral images. The results demonstrated that single spectral UV imaging at 365 nm combined with Faster R-CNN has great potential for the automatic identification of transparent HNS floating on the surface of the water. RGB images and images using Faster R-CNN in the blue channel are capable of HNS segmentation. [Display omitted] •Faster R-CNN assisted single spectral imaging is capable of HNS spill identification.•UV images at 365 nm outperformed RGB and blue channel images in HNS identification.•Faster R-CNN helps to overcome the challenges of optical imaging for HNS.•Waveband has great effect on the identification efficiency of HNS spectral imaging. Main findings: 1. Faster R-CNN-assisted single spectral imaging is capable of HNS spill identification, i.e. location, classification, and segmentation. 2. UV images at 365 nm outperformed RGB and blue-channel images in Faster R-CNN-based HNS identification.
doi_str_mv 10.1016/j.envpol.2019.113688
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_envpol_2019_113688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749119340990</els_id><sourcerecordid>S0269749119340990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk7_gUj-QGvSpF16I8jwC8YEP-6EkCUnM6NrS9IN5683teqlcOC8F-97Ph6EzilJKaHF5TqFetc2VZoRWqaUskKIAzSmYsqSgmf8EI1JVpTJlJd0hE5CWBNCOGPsGI1YFqXI8zF6e3b1qgIcWtCdVxV2G7UCv8eqNtiq0IHHT8lsscBdg52BunN2j9_Vp_Km2YZvW918uF6H7TJ0qtYQZeuqKpyiI6uqAGc_fYJeb29eZvfJ_PHuYXY9TzQrsi4pQZVAstwKYyi1Oe_LZMpoxstCCaFKyyhXTEyFYZYpwZeW5FYzzSixhk0QH-Zq34TgwcrWxz_8XlIie1hyLQdYsoclB1gxdjHE2u1yA-Yv9EsnGq4GA8Tjdw68DNpBfNA4H3FJ07j_N3wB4UV-ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Huang, Hui ; Wang, Chao ; Liu, Shuchang ; Sun, Zehao ; Zhang, Dejun ; Liu, Caicai ; Jiang, Yang ; Zhan, Shuyue ; Zhang, Haofei ; Xu, Ren</creator><creatorcontrib>Huang, Hui ; Wang, Chao ; Liu, Shuchang ; Sun, Zehao ; Zhang, Dejun ; Liu, Caicai ; Jiang, Yang ; Zhan, Shuyue ; Zhang, Haofei ; Xu, Ren</creatorcontrib><description>The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challenging. With a focus on the on-site optical imaging of HNS, this study explores the potential of single spectral imaging for HNS identification using the Faster R-CNN architecture. Images at 365 nm (narrow UV band), blue channel images (visible broadband of ∼400–600 nm), and RGB images of typical HNS (benzene, xylene, and palm oil) in different scenarios were studied with and without Faster R-CNN. Faster R-CNN was applied to locate and classify the HNS spills. The segmentation using Faster R-CNN-based methods and the original masking methods, including Otsu, Max entropy, and the local fuzzy thresholding method (LFTM), were investigated to explore the optimal wavelength and corresponding image processing method for the optical imaging of HNS. We also compared the classification and segmentation results of this study with our previously published studies on multispectral and whole spectral images. The results demonstrated that single spectral UV imaging at 365 nm combined with Faster R-CNN has great potential for the automatic identification of transparent HNS floating on the surface of the water. RGB images and images using Faster R-CNN in the blue channel are capable of HNS segmentation. [Display omitted] •Faster R-CNN assisted single spectral imaging is capable of HNS spill identification.•UV images at 365 nm outperformed RGB and blue channel images in HNS identification.•Faster R-CNN helps to overcome the challenges of optical imaging for HNS.•Waveband has great effect on the identification efficiency of HNS spectral imaging. Main findings: 1. Faster R-CNN-assisted single spectral imaging is capable of HNS spill identification, i.e. location, classification, and segmentation. 2. UV images at 365 nm outperformed RGB and blue-channel images in Faster R-CNN-based HNS identification.</description><identifier>ISSN: 0269-7491</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2019.113688</identifier><identifier>PMID: 32004855</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Faster R-CNN ; Hazardous and noxious substances ; Hazardous Substances - analysis ; Hydrocarbons - analysis ; Hyperspectral imaging ; Neural Networks, Computer ; Petroleum Pollution - analysis ; Spectral imagery ; Spectrum Analysis ; Spill response ; Water Pollution, Chemical - analysis</subject><ispartof>Environmental pollution (1987), 2020-03, Vol.258, p.113688, Article 113688</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3</citedby><cites>FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32004855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Liu, Shuchang</creatorcontrib><creatorcontrib>Sun, Zehao</creatorcontrib><creatorcontrib>Zhang, Dejun</creatorcontrib><creatorcontrib>Liu, Caicai</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Zhan, Shuyue</creatorcontrib><creatorcontrib>Zhang, Haofei</creatorcontrib><creatorcontrib>Xu, Ren</creatorcontrib><title>Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills</title><title>Environmental pollution (1987)</title><addtitle>Environ Pollut</addtitle><description>The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challenging. With a focus on the on-site optical imaging of HNS, this study explores the potential of single spectral imaging for HNS identification using the Faster R-CNN architecture. Images at 365 nm (narrow UV band), blue channel images (visible broadband of ∼400–600 nm), and RGB images of typical HNS (benzene, xylene, and palm oil) in different scenarios were studied with and without Faster R-CNN. Faster R-CNN was applied to locate and classify the HNS spills. The segmentation using Faster R-CNN-based methods and the original masking methods, including Otsu, Max entropy, and the local fuzzy thresholding method (LFTM), were investigated to explore the optimal wavelength and corresponding image processing method for the optical imaging of HNS. We also compared the classification and segmentation results of this study with our previously published studies on multispectral and whole spectral images. The results demonstrated that single spectral UV imaging at 365 nm combined with Faster R-CNN has great potential for the automatic identification of transparent HNS floating on the surface of the water. RGB images and images using Faster R-CNN in the blue channel are capable of HNS segmentation. [Display omitted] •Faster R-CNN assisted single spectral imaging is capable of HNS spill identification.•UV images at 365 nm outperformed RGB and blue channel images in HNS identification.•Faster R-CNN helps to overcome the challenges of optical imaging for HNS.•Waveband has great effect on the identification efficiency of HNS spectral imaging. Main findings: 1. Faster R-CNN-assisted single spectral imaging is capable of HNS spill identification, i.e. location, classification, and segmentation. 2. UV images at 365 nm outperformed RGB and blue-channel images in Faster R-CNN-based HNS identification.</description><subject>Faster R-CNN</subject><subject>Hazardous and noxious substances</subject><subject>Hazardous Substances - analysis</subject><subject>Hydrocarbons - analysis</subject><subject>Hyperspectral imaging</subject><subject>Neural Networks, Computer</subject><subject>Petroleum Pollution - analysis</subject><subject>Spectral imagery</subject><subject>Spectrum Analysis</subject><subject>Spill response</subject><subject>Water Pollution, Chemical - analysis</subject><issn>0269-7491</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMobk7_gUj-QGvSpF16I8jwC8YEP-6EkCUnM6NrS9IN5683teqlcOC8F-97Ph6EzilJKaHF5TqFetc2VZoRWqaUskKIAzSmYsqSgmf8EI1JVpTJlJd0hE5CWBNCOGPsGI1YFqXI8zF6e3b1qgIcWtCdVxV2G7UCv8eqNtiq0IHHT8lsscBdg52BunN2j9_Vp_Km2YZvW918uF6H7TJ0qtYQZeuqKpyiI6uqAGc_fYJeb29eZvfJ_PHuYXY9TzQrsi4pQZVAstwKYyi1Oe_LZMpoxstCCaFKyyhXTEyFYZYpwZeW5FYzzSixhk0QH-Zq34TgwcrWxz_8XlIie1hyLQdYsoclB1gxdjHE2u1yA-Yv9EsnGq4GA8Tjdw68DNpBfNA4H3FJ07j_N3wB4UV-ow</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Huang, Hui</creator><creator>Wang, Chao</creator><creator>Liu, Shuchang</creator><creator>Sun, Zehao</creator><creator>Zhang, Dejun</creator><creator>Liu, Caicai</creator><creator>Jiang, Yang</creator><creator>Zhan, Shuyue</creator><creator>Zhang, Haofei</creator><creator>Xu, Ren</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202003</creationdate><title>Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills</title><author>Huang, Hui ; Wang, Chao ; Liu, Shuchang ; Sun, Zehao ; Zhang, Dejun ; Liu, Caicai ; Jiang, Yang ; Zhan, Shuyue ; Zhang, Haofei ; Xu, Ren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Faster R-CNN</topic><topic>Hazardous and noxious substances</topic><topic>Hazardous Substances - analysis</topic><topic>Hydrocarbons - analysis</topic><topic>Hyperspectral imaging</topic><topic>Neural Networks, Computer</topic><topic>Petroleum Pollution - analysis</topic><topic>Spectral imagery</topic><topic>Spectrum Analysis</topic><topic>Spill response</topic><topic>Water Pollution, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Liu, Shuchang</creatorcontrib><creatorcontrib>Sun, Zehao</creatorcontrib><creatorcontrib>Zhang, Dejun</creatorcontrib><creatorcontrib>Liu, Caicai</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Zhan, Shuyue</creatorcontrib><creatorcontrib>Zhang, Haofei</creatorcontrib><creatorcontrib>Xu, Ren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hui</au><au>Wang, Chao</au><au>Liu, Shuchang</au><au>Sun, Zehao</au><au>Zhang, Dejun</au><au>Liu, Caicai</au><au>Jiang, Yang</au><au>Zhan, Shuyue</au><au>Zhang, Haofei</au><au>Xu, Ren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills</atitle><jtitle>Environmental pollution (1987)</jtitle><addtitle>Environ Pollut</addtitle><date>2020-03</date><risdate>2020</risdate><volume>258</volume><spage>113688</spage><pages>113688-</pages><artnum>113688</artnum><issn>0269-7491</issn><eissn>1873-6424</eissn><abstract>The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challenging. With a focus on the on-site optical imaging of HNS, this study explores the potential of single spectral imaging for HNS identification using the Faster R-CNN architecture. Images at 365 nm (narrow UV band), blue channel images (visible broadband of ∼400–600 nm), and RGB images of typical HNS (benzene, xylene, and palm oil) in different scenarios were studied with and without Faster R-CNN. Faster R-CNN was applied to locate and classify the HNS spills. The segmentation using Faster R-CNN-based methods and the original masking methods, including Otsu, Max entropy, and the local fuzzy thresholding method (LFTM), were investigated to explore the optimal wavelength and corresponding image processing method for the optical imaging of HNS. We also compared the classification and segmentation results of this study with our previously published studies on multispectral and whole spectral images. The results demonstrated that single spectral UV imaging at 365 nm combined with Faster R-CNN has great potential for the automatic identification of transparent HNS floating on the surface of the water. RGB images and images using Faster R-CNN in the blue channel are capable of HNS segmentation. [Display omitted] •Faster R-CNN assisted single spectral imaging is capable of HNS spill identification.•UV images at 365 nm outperformed RGB and blue channel images in HNS identification.•Faster R-CNN helps to overcome the challenges of optical imaging for HNS.•Waveband has great effect on the identification efficiency of HNS spectral imaging. Main findings: 1. Faster R-CNN-assisted single spectral imaging is capable of HNS spill identification, i.e. location, classification, and segmentation. 2. UV images at 365 nm outperformed RGB and blue-channel images in Faster R-CNN-based HNS identification.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32004855</pmid><doi>10.1016/j.envpol.2019.113688</doi></addata></record>
fulltext fulltext
identifier ISSN: 0269-7491
ispartof Environmental pollution (1987), 2020-03, Vol.258, p.113688, Article 113688
issn 0269-7491
1873-6424
language eng
recordid cdi_crossref_primary_10_1016_j_envpol_2019_113688
source ScienceDirect Freedom Collection 2022-2024
subjects Faster R-CNN
Hazardous and noxious substances
Hazardous Substances - analysis
Hydrocarbons - analysis
Hyperspectral imaging
Neural Networks, Computer
Petroleum Pollution - analysis
Spectral imagery
Spectrum Analysis
Spill response
Water Pollution, Chemical - analysis
title Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20spectral%20imagery%20and%20faster%20R-CNN%20to%20identify%20hazardous%20and%20noxious%20substances%20spills&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Huang,%20Hui&rft.date=2020-03&rft.volume=258&rft.spage=113688&rft.pages=113688-&rft.artnum=113688&rft.issn=0269-7491&rft.eissn=1873-6424&rft_id=info:doi/10.1016/j.envpol.2019.113688&rft_dat=%3Celsevier_cross%3ES0269749119340990%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32004855&rfr_iscdi=true