Loading…
Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills
The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challenging. With a focus on the on-site optical imaging o...
Saved in:
Published in: | Environmental pollution (1987) 2020-03, Vol.258, p.113688, Article 113688 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3 |
container_end_page | |
container_issue | |
container_start_page | 113688 |
container_title | Environmental pollution (1987) |
container_volume | 258 |
creator | Huang, Hui Wang, Chao Liu, Shuchang Sun, Zehao Zhang, Dejun Liu, Caicai Jiang, Yang Zhan, Shuyue Zhang, Haofei Xu, Ren |
description | The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challenging. With a focus on the on-site optical imaging of HNS, this study explores the potential of single spectral imaging for HNS identification using the Faster R-CNN architecture. Images at 365 nm (narrow UV band), blue channel images (visible broadband of ∼400–600 nm), and RGB images of typical HNS (benzene, xylene, and palm oil) in different scenarios were studied with and without Faster R-CNN. Faster R-CNN was applied to locate and classify the HNS spills. The segmentation using Faster R-CNN-based methods and the original masking methods, including Otsu, Max entropy, and the local fuzzy thresholding method (LFTM), were investigated to explore the optimal wavelength and corresponding image processing method for the optical imaging of HNS. We also compared the classification and segmentation results of this study with our previously published studies on multispectral and whole spectral images. The results demonstrated that single spectral UV imaging at 365 nm combined with Faster R-CNN has great potential for the automatic identification of transparent HNS floating on the surface of the water. RGB images and images using Faster R-CNN in the blue channel are capable of HNS segmentation.
[Display omitted]
•Faster R-CNN assisted single spectral imaging is capable of HNS spill identification.•UV images at 365 nm outperformed RGB and blue channel images in HNS identification.•Faster R-CNN helps to overcome the challenges of optical imaging for HNS.•Waveband has great effect on the identification efficiency of HNS spectral imaging.
Main findings: 1. Faster R-CNN-assisted single spectral imaging is capable of HNS spill identification, i.e. location, classification, and segmentation. 2. UV images at 365 nm outperformed RGB and blue-channel images in Faster R-CNN-based HNS identification. |
doi_str_mv | 10.1016/j.envpol.2019.113688 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_envpol_2019_113688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749119340990</els_id><sourcerecordid>S0269749119340990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk7_gUj-QGvSpF16I8jwC8YEP-6EkCUnM6NrS9IN5683teqlcOC8F-97Ph6EzilJKaHF5TqFetc2VZoRWqaUskKIAzSmYsqSgmf8EI1JVpTJlJd0hE5CWBNCOGPsGI1YFqXI8zF6e3b1qgIcWtCdVxV2G7UCv8eqNtiq0IHHT8lsscBdg52BunN2j9_Vp_Km2YZvW918uF6H7TJ0qtYQZeuqKpyiI6uqAGc_fYJeb29eZvfJ_PHuYXY9TzQrsi4pQZVAstwKYyi1Oe_LZMpoxstCCaFKyyhXTEyFYZYpwZeW5FYzzSixhk0QH-Zq34TgwcrWxz_8XlIie1hyLQdYsoclB1gxdjHE2u1yA-Yv9EsnGq4GA8Tjdw68DNpBfNA4H3FJ07j_N3wB4UV-ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Huang, Hui ; Wang, Chao ; Liu, Shuchang ; Sun, Zehao ; Zhang, Dejun ; Liu, Caicai ; Jiang, Yang ; Zhan, Shuyue ; Zhang, Haofei ; Xu, Ren</creator><creatorcontrib>Huang, Hui ; Wang, Chao ; Liu, Shuchang ; Sun, Zehao ; Zhang, Dejun ; Liu, Caicai ; Jiang, Yang ; Zhan, Shuyue ; Zhang, Haofei ; Xu, Ren</creatorcontrib><description>The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challenging. With a focus on the on-site optical imaging of HNS, this study explores the potential of single spectral imaging for HNS identification using the Faster R-CNN architecture. Images at 365 nm (narrow UV band), blue channel images (visible broadband of ∼400–600 nm), and RGB images of typical HNS (benzene, xylene, and palm oil) in different scenarios were studied with and without Faster R-CNN. Faster R-CNN was applied to locate and classify the HNS spills. The segmentation using Faster R-CNN-based methods and the original masking methods, including Otsu, Max entropy, and the local fuzzy thresholding method (LFTM), were investigated to explore the optimal wavelength and corresponding image processing method for the optical imaging of HNS. We also compared the classification and segmentation results of this study with our previously published studies on multispectral and whole spectral images. The results demonstrated that single spectral UV imaging at 365 nm combined with Faster R-CNN has great potential for the automatic identification of transparent HNS floating on the surface of the water. RGB images and images using Faster R-CNN in the blue channel are capable of HNS segmentation.
[Display omitted]
•Faster R-CNN assisted single spectral imaging is capable of HNS spill identification.•UV images at 365 nm outperformed RGB and blue channel images in HNS identification.•Faster R-CNN helps to overcome the challenges of optical imaging for HNS.•Waveband has great effect on the identification efficiency of HNS spectral imaging.
Main findings: 1. Faster R-CNN-assisted single spectral imaging is capable of HNS spill identification, i.e. location, classification, and segmentation. 2. UV images at 365 nm outperformed RGB and blue-channel images in Faster R-CNN-based HNS identification.</description><identifier>ISSN: 0269-7491</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2019.113688</identifier><identifier>PMID: 32004855</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Faster R-CNN ; Hazardous and noxious substances ; Hazardous Substances - analysis ; Hydrocarbons - analysis ; Hyperspectral imaging ; Neural Networks, Computer ; Petroleum Pollution - analysis ; Spectral imagery ; Spectrum Analysis ; Spill response ; Water Pollution, Chemical - analysis</subject><ispartof>Environmental pollution (1987), 2020-03, Vol.258, p.113688, Article 113688</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright © 2019 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3</citedby><cites>FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32004855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Liu, Shuchang</creatorcontrib><creatorcontrib>Sun, Zehao</creatorcontrib><creatorcontrib>Zhang, Dejun</creatorcontrib><creatorcontrib>Liu, Caicai</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Zhan, Shuyue</creatorcontrib><creatorcontrib>Zhang, Haofei</creatorcontrib><creatorcontrib>Xu, Ren</creatorcontrib><title>Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills</title><title>Environmental pollution (1987)</title><addtitle>Environ Pollut</addtitle><description>The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challenging. With a focus on the on-site optical imaging of HNS, this study explores the potential of single spectral imaging for HNS identification using the Faster R-CNN architecture. Images at 365 nm (narrow UV band), blue channel images (visible broadband of ∼400–600 nm), and RGB images of typical HNS (benzene, xylene, and palm oil) in different scenarios were studied with and without Faster R-CNN. Faster R-CNN was applied to locate and classify the HNS spills. The segmentation using Faster R-CNN-based methods and the original masking methods, including Otsu, Max entropy, and the local fuzzy thresholding method (LFTM), were investigated to explore the optimal wavelength and corresponding image processing method for the optical imaging of HNS. We also compared the classification and segmentation results of this study with our previously published studies on multispectral and whole spectral images. The results demonstrated that single spectral UV imaging at 365 nm combined with Faster R-CNN has great potential for the automatic identification of transparent HNS floating on the surface of the water. RGB images and images using Faster R-CNN in the blue channel are capable of HNS segmentation.
[Display omitted]
•Faster R-CNN assisted single spectral imaging is capable of HNS spill identification.•UV images at 365 nm outperformed RGB and blue channel images in HNS identification.•Faster R-CNN helps to overcome the challenges of optical imaging for HNS.•Waveband has great effect on the identification efficiency of HNS spectral imaging.
Main findings: 1. Faster R-CNN-assisted single spectral imaging is capable of HNS spill identification, i.e. location, classification, and segmentation. 2. UV images at 365 nm outperformed RGB and blue-channel images in Faster R-CNN-based HNS identification.</description><subject>Faster R-CNN</subject><subject>Hazardous and noxious substances</subject><subject>Hazardous Substances - analysis</subject><subject>Hydrocarbons - analysis</subject><subject>Hyperspectral imaging</subject><subject>Neural Networks, Computer</subject><subject>Petroleum Pollution - analysis</subject><subject>Spectral imagery</subject><subject>Spectrum Analysis</subject><subject>Spill response</subject><subject>Water Pollution, Chemical - analysis</subject><issn>0269-7491</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMobk7_gUj-QGvSpF16I8jwC8YEP-6EkCUnM6NrS9IN5683teqlcOC8F-97Ph6EzilJKaHF5TqFetc2VZoRWqaUskKIAzSmYsqSgmf8EI1JVpTJlJd0hE5CWBNCOGPsGI1YFqXI8zF6e3b1qgIcWtCdVxV2G7UCv8eqNtiq0IHHT8lsscBdg52BunN2j9_Vp_Km2YZvW918uF6H7TJ0qtYQZeuqKpyiI6uqAGc_fYJeb29eZvfJ_PHuYXY9TzQrsi4pQZVAstwKYyi1Oe_LZMpoxstCCaFKyyhXTEyFYZYpwZeW5FYzzSixhk0QH-Zq34TgwcrWxz_8XlIie1hyLQdYsoclB1gxdjHE2u1yA-Yv9EsnGq4GA8Tjdw68DNpBfNA4H3FJ07j_N3wB4UV-ow</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Huang, Hui</creator><creator>Wang, Chao</creator><creator>Liu, Shuchang</creator><creator>Sun, Zehao</creator><creator>Zhang, Dejun</creator><creator>Liu, Caicai</creator><creator>Jiang, Yang</creator><creator>Zhan, Shuyue</creator><creator>Zhang, Haofei</creator><creator>Xu, Ren</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202003</creationdate><title>Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills</title><author>Huang, Hui ; Wang, Chao ; Liu, Shuchang ; Sun, Zehao ; Zhang, Dejun ; Liu, Caicai ; Jiang, Yang ; Zhan, Shuyue ; Zhang, Haofei ; Xu, Ren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Faster R-CNN</topic><topic>Hazardous and noxious substances</topic><topic>Hazardous Substances - analysis</topic><topic>Hydrocarbons - analysis</topic><topic>Hyperspectral imaging</topic><topic>Neural Networks, Computer</topic><topic>Petroleum Pollution - analysis</topic><topic>Spectral imagery</topic><topic>Spectrum Analysis</topic><topic>Spill response</topic><topic>Water Pollution, Chemical - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hui</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Liu, Shuchang</creatorcontrib><creatorcontrib>Sun, Zehao</creatorcontrib><creatorcontrib>Zhang, Dejun</creatorcontrib><creatorcontrib>Liu, Caicai</creatorcontrib><creatorcontrib>Jiang, Yang</creatorcontrib><creatorcontrib>Zhan, Shuyue</creatorcontrib><creatorcontrib>Zhang, Haofei</creatorcontrib><creatorcontrib>Xu, Ren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hui</au><au>Wang, Chao</au><au>Liu, Shuchang</au><au>Sun, Zehao</au><au>Zhang, Dejun</au><au>Liu, Caicai</au><au>Jiang, Yang</au><au>Zhan, Shuyue</au><au>Zhang, Haofei</au><au>Xu, Ren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills</atitle><jtitle>Environmental pollution (1987)</jtitle><addtitle>Environ Pollut</addtitle><date>2020-03</date><risdate>2020</risdate><volume>258</volume><spage>113688</spage><pages>113688-</pages><artnum>113688</artnum><issn>0269-7491</issn><eissn>1873-6424</eissn><abstract>The automatic identification (location, segmentation, and classification) by UAV- based optical imaging of spills of transparent floating Hazardous and Noxious Substances (HNS) benefits the on-site response to spill incidents, but it is also challenging. With a focus on the on-site optical imaging of HNS, this study explores the potential of single spectral imaging for HNS identification using the Faster R-CNN architecture. Images at 365 nm (narrow UV band), blue channel images (visible broadband of ∼400–600 nm), and RGB images of typical HNS (benzene, xylene, and palm oil) in different scenarios were studied with and without Faster R-CNN. Faster R-CNN was applied to locate and classify the HNS spills. The segmentation using Faster R-CNN-based methods and the original masking methods, including Otsu, Max entropy, and the local fuzzy thresholding method (LFTM), were investigated to explore the optimal wavelength and corresponding image processing method for the optical imaging of HNS. We also compared the classification and segmentation results of this study with our previously published studies on multispectral and whole spectral images. The results demonstrated that single spectral UV imaging at 365 nm combined with Faster R-CNN has great potential for the automatic identification of transparent HNS floating on the surface of the water. RGB images and images using Faster R-CNN in the blue channel are capable of HNS segmentation.
[Display omitted]
•Faster R-CNN assisted single spectral imaging is capable of HNS spill identification.•UV images at 365 nm outperformed RGB and blue channel images in HNS identification.•Faster R-CNN helps to overcome the challenges of optical imaging for HNS.•Waveband has great effect on the identification efficiency of HNS spectral imaging.
Main findings: 1. Faster R-CNN-assisted single spectral imaging is capable of HNS spill identification, i.e. location, classification, and segmentation. 2. UV images at 365 nm outperformed RGB and blue-channel images in Faster R-CNN-based HNS identification.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32004855</pmid><doi>10.1016/j.envpol.2019.113688</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-7491 |
ispartof | Environmental pollution (1987), 2020-03, Vol.258, p.113688, Article 113688 |
issn | 0269-7491 1873-6424 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_envpol_2019_113688 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Faster R-CNN Hazardous and noxious substances Hazardous Substances - analysis Hydrocarbons - analysis Hyperspectral imaging Neural Networks, Computer Petroleum Pollution - analysis Spectral imagery Spectrum Analysis Spill response Water Pollution, Chemical - analysis |
title | Single spectral imagery and faster R-CNN to identify hazardous and noxious substances spills |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A29%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20spectral%20imagery%20and%20faster%20R-CNN%20to%20identify%20hazardous%20and%20noxious%20substances%20spills&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Huang,%20Hui&rft.date=2020-03&rft.volume=258&rft.spage=113688&rft.pages=113688-&rft.artnum=113688&rft.issn=0269-7491&rft.eissn=1873-6424&rft_id=info:doi/10.1016/j.envpol.2019.113688&rft_dat=%3Celsevier_cross%3ES0269749119340990%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-9ea9e025f8dd11f54f54fd2adc3496a88a9f314a3878d3f3a84bf05fc3c310fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/32004855&rfr_iscdi=true |