Loading…

Ionic liquid-biosurfactant blends as effective dispersants for oil spills: Effect of carbon chain length and degree of saturation

The well-known toxicity of conventional chemical oil spill dispersants demands the development of alternative and environmentally friendly dispersant formulations. Therefore, in the present study we have developed a pair of less toxic and green dispersants by combining lactonic sophorolipid (LS) bio...

Full description

Saved in:
Bibliographic Details
Published in:Environmental pollution (1987) 2021-09, Vol.284, p.117119, Article 117119
Main Authors: Hassan Shah, Mansoor Ul, Bhaskar Reddy, Ambavaram Vijaya, Yusup, Suzana, Goto, Masahiro, Moniruzzaman, Muhammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The well-known toxicity of conventional chemical oil spill dispersants demands the development of alternative and environmentally friendly dispersant formulations. Therefore, in the present study we have developed a pair of less toxic and green dispersants by combining lactonic sophorolipid (LS) biosurfactant individually with choline myristate and choline oleate ionic liquid surfactants. The aggregation behavior of resulted surfactant blends and their dispersion effectiveness was investigated using the baffled flask test. The introduction of long hydrophobic alkyl chain with unsaturation (attached to choline cation) provided synergistic interactions between the binary surfactant mixtures. The maximum dispersion effectiveness was found to be 78.23% for 80:20 (w/w) lactonic sophorolipid-choline myristate blends, and 81.15% for 70:30 (w/w) lactonic sophorolipid-choline oleate blends at the dispersant-to-oil ratio of 1:25 (v/v). The high dispersion effectiveness of lactonic sophorolipid-choline oleate between two developed blends is attributed to the stronger synergistic interactions between surfactants and slower desorption rate of blend from oil-water interface. The distribution of dispersed oil droplets at several DOR were evaluated and it was observed that oil droplets become smaller with increasing DOR. In addition, the acute toxicity analysis of developed formulations against zebra fish (Danio rerio) confirmed their non-toxic behavior with LC50 values higher than 400 ppm after 96 h. Overall, the proposed new blends/formulations could effectively substitute the toxic and unsafe chemical dispersants. [Display omitted] •Aggregation behavior of newly developed formulations was investigated.•The ILs having long alkyl chain with unsaturation provided strong interactions.•Synergism between biosurfactant and IL surfactants enhanced dispersion >80%.•Toxicity values > 100 mg/L ranked the new formulations under “non-toxic” category.•Novel ILs based biosurfactant formulations could replace toxic chemical dispersants. This article reports environmentally friendly oil spill dispersants composed of a biosurfactant and biocompatible surface-active ionic liquids as potential alternatives to toxic conventional dispersants.
ISSN:0269-7491
1873-6424
DOI:10.1016/j.envpol.2021.117119