Loading…

Efficient adsorption of diclofenac sodium in water by a novel functionalized cellulose aerogel

In this work, a novel cellulose aerogel (CNC-PVAm/rGO) was fabricated using cellulose nanocrystalline (CNC) modified with polyvinylamine (PVAm) and reduced graphene oxide (rGO). The resultant CNC-PVAm/rGO was then applied for the adsorption of diclofenac sodium (DCF), a typical non-steroidal anti-in...

Full description

Saved in:
Bibliographic Details
Published in:Environmental research 2021-03, Vol.194, p.110652, Article 110652
Main Authors: Lv, Yuancai, Liang, Zuxue, Li, Yinghan, Chen, Yicong, Liu, Kaiyang, Yang, Guifang, Liu, Yifan, Lin, Chunxiang, Ye, Xiaoxia, Shi, Yongqian, Liu, Minghua
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, a novel cellulose aerogel (CNC-PVAm/rGO) was fabricated using cellulose nanocrystalline (CNC) modified with polyvinylamine (PVAm) and reduced graphene oxide (rGO). The resultant CNC-PVAm/rGO was then applied for the adsorption of diclofenac sodium (DCF), a typical non-steroidal anti-inflammatory drug. Characterization using ultra-high-resolution field emission scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and the Brunauer-Emmett-Teller surface area revealed that the obtained CNC-PVAm/rGO displayed an evident 3D porous structure, which had an ultralight weight, good recovery, abundant surface functional groups (e.g., –NH2 and –OH), and rGO nanosheets. In addition, the material presented a stable crystal structure and large specific surface area (105.73 m2 g−1). During the adsorption of DCF, the CNC-PVAm/rGO aerogel showed a rather excellent adsorption performance, with a maximum adsorption capacity (qmax) of 605.87 mg g−1, which was approximately 53 times larger than that of the bare CNC aerogel (11.45 mg g−1). The adsorption performance of CNC-PVAm/rGO was also better than that of other reported adsorbents. The adsorption of DCF to CNC-PVAm/rGO obeyed the Langmuir isotherm and pseudo-second-order kinetic models, and underwent a spontaneous exothermic process. Moreover, DCF was easily desorbed from CNC-PVAm/rGO with sodium hydroxide solution (0.1 mol L−1), and the absorbent could be reused four times. The introduction of PVAm and rGO to the CNC-PVAm/rGO aerogel also greatly enhanced electrostatic interactions, π-π interactions, and hydrophobic effects. These enhancements significantly promoted the hydrogen bonding interactions between the DCF molecules and CNC-PVAm/rGO, thus resulting in a large improvement in the adsorption performance of the aerogel.
ISSN:0013-9351
1096-0953
DOI:10.1016/j.envres.2020.110652