Loading…

Cascading effect modelling of integrating geographic factors in interdependent systems

Cascading effects from global disruptions such as natural disasters and pandemics have attracted significant research attention. Current approaches face challenges in adequately integrating geographic and systemic factors, limiting their ability to simulate the intricate dynamics of interdependent s...

Full description

Saved in:
Bibliographic Details
Published in:Environmental modelling & software : with environment data news 2025-02, Vol.185, p.106316, Article 106316
Main Authors: Ge, Yong, Zhang, Mo, Zhao, Rongtian, Zhang, Die, Zhang, Zhiyi, Wang, Daoping, Cheng, Qiuming, Cui, Yuxue, Liu, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1026-7b1fe7663e0197fbfdc90299405f141c0c863795d817349871aa7471f193ce03
container_end_page
container_issue
container_start_page 106316
container_title Environmental modelling & software : with environment data news
container_volume 185
creator Ge, Yong
Zhang, Mo
Zhao, Rongtian
Zhang, Die
Zhang, Zhiyi
Wang, Daoping
Cheng, Qiuming
Cui, Yuxue
Liu, Jian
description Cascading effects from global disruptions such as natural disasters and pandemics have attracted significant research attention. Current approaches face challenges in adequately integrating geographic and systemic factors, limiting their ability to simulate the intricate dynamics of interdependent systems. Here, we proposed a novel Interdependency Network-based Geographic Cascade (INGC) model, coupling geographic factors to capture cascading shocks across global interdependent networks. By integrating macro-level interdependencies and typical dynamic network modelling approaches, the INGC enables more accurate simulations of hazard damage and shock propagation, highlighting critical nodes and pathways essential for informed policy-making. Through the global lockdown case analysis, the INGC model demonstrated its advantages in identifying critical sectors and regions by revealing heterogenous cascading patterns and their details robustly. This approach offers a scalable framework for future research and policy, ensuring greater resilience in the face of complex global extreme events. •We proposed a geographic cascade model based on interdependency networks.•INGC model can quantify losses, detect propagation, assess risks of cascades.•The model showed different cascading patterns in the global lockdown case.•INGC outputs provide key warnings to mitigate losses and allocate resources.
doi_str_mv 10.1016/j.envsoft.2024.106316
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_envsoft_2024_106316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815224003773</els_id><sourcerecordid>S1364815224003773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1026-7b1fe7663e0197fbfdc90299405f141c0c863795d817349871aa7471f193ce03</originalsourceid><addsrcrecordid>eNqFkM9KAzEQxnNQsFYfQdgX2JrZZJPNSaT4DwpeiteQJpOa0m5KEgp9e7PWu6f55pv5huFHyAPQBVAQj7sFjqccfVl0tOPVEwzEFZkBE7wdoO9uyG3OO0pp1XxGvpYmW-PCuG3Qe7SlOUSH-_1kRN-EseA2mTK1W4xVHr-DbbyxJaZcx78byeERR4djafI5FzzkO3LtzT7j_V-dk_Xry3r53q4-3z6Wz6vWAu1EKzfgUQrBkIKSfuOdVbRTitPeAwdL7SCYVL0bQDKuBgnGSC7Bg2IWKZuT_nLWpphzQq-PKRxMOmugeuKhd_qPh5546AuPmnu65LD-dgqYdLYBR4supMpAuxj-ufADlhdu6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cascading effect modelling of integrating geographic factors in interdependent systems</title><source>ScienceDirect Freedom Collection</source><creator>Ge, Yong ; Zhang, Mo ; Zhao, Rongtian ; Zhang, Die ; Zhang, Zhiyi ; Wang, Daoping ; Cheng, Qiuming ; Cui, Yuxue ; Liu, Jian</creator><creatorcontrib>Ge, Yong ; Zhang, Mo ; Zhao, Rongtian ; Zhang, Die ; Zhang, Zhiyi ; Wang, Daoping ; Cheng, Qiuming ; Cui, Yuxue ; Liu, Jian</creatorcontrib><description>Cascading effects from global disruptions such as natural disasters and pandemics have attracted significant research attention. Current approaches face challenges in adequately integrating geographic and systemic factors, limiting their ability to simulate the intricate dynamics of interdependent systems. Here, we proposed a novel Interdependency Network-based Geographic Cascade (INGC) model, coupling geographic factors to capture cascading shocks across global interdependent networks. By integrating macro-level interdependencies and typical dynamic network modelling approaches, the INGC enables more accurate simulations of hazard damage and shock propagation, highlighting critical nodes and pathways essential for informed policy-making. Through the global lockdown case analysis, the INGC model demonstrated its advantages in identifying critical sectors and regions by revealing heterogenous cascading patterns and their details robustly. This approach offers a scalable framework for future research and policy, ensuring greater resilience in the face of complex global extreme events. •We proposed a geographic cascade model based on interdependency networks.•INGC model can quantify losses, detect propagation, assess risks of cascades.•The model showed different cascading patterns in the global lockdown case.•INGC outputs provide key warnings to mitigate losses and allocate resources.</description><identifier>ISSN: 1364-8152</identifier><identifier>DOI: 10.1016/j.envsoft.2024.106316</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cascading effect ; Complex system ; Extreme events ; Integrating modeling ; Risk identification</subject><ispartof>Environmental modelling &amp; software : with environment data news, 2025-02, Vol.185, p.106316, Article 106316</ispartof><rights>2025 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1026-7b1fe7663e0197fbfdc90299405f141c0c863795d817349871aa7471f193ce03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ge, Yong</creatorcontrib><creatorcontrib>Zhang, Mo</creatorcontrib><creatorcontrib>Zhao, Rongtian</creatorcontrib><creatorcontrib>Zhang, Die</creatorcontrib><creatorcontrib>Zhang, Zhiyi</creatorcontrib><creatorcontrib>Wang, Daoping</creatorcontrib><creatorcontrib>Cheng, Qiuming</creatorcontrib><creatorcontrib>Cui, Yuxue</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><title>Cascading effect modelling of integrating geographic factors in interdependent systems</title><title>Environmental modelling &amp; software : with environment data news</title><description>Cascading effects from global disruptions such as natural disasters and pandemics have attracted significant research attention. Current approaches face challenges in adequately integrating geographic and systemic factors, limiting their ability to simulate the intricate dynamics of interdependent systems. Here, we proposed a novel Interdependency Network-based Geographic Cascade (INGC) model, coupling geographic factors to capture cascading shocks across global interdependent networks. By integrating macro-level interdependencies and typical dynamic network modelling approaches, the INGC enables more accurate simulations of hazard damage and shock propagation, highlighting critical nodes and pathways essential for informed policy-making. Through the global lockdown case analysis, the INGC model demonstrated its advantages in identifying critical sectors and regions by revealing heterogenous cascading patterns and their details robustly. This approach offers a scalable framework for future research and policy, ensuring greater resilience in the face of complex global extreme events. •We proposed a geographic cascade model based on interdependency networks.•INGC model can quantify losses, detect propagation, assess risks of cascades.•The model showed different cascading patterns in the global lockdown case.•INGC outputs provide key warnings to mitigate losses and allocate resources.</description><subject>Cascading effect</subject><subject>Complex system</subject><subject>Extreme events</subject><subject>Integrating modeling</subject><subject>Risk identification</subject><issn>1364-8152</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQxnNQsFYfQdgX2JrZZJPNSaT4DwpeiteQJpOa0m5KEgp9e7PWu6f55pv5huFHyAPQBVAQj7sFjqccfVl0tOPVEwzEFZkBE7wdoO9uyG3OO0pp1XxGvpYmW-PCuG3Qe7SlOUSH-_1kRN-EseA2mTK1W4xVHr-DbbyxJaZcx78byeERR4djafI5FzzkO3LtzT7j_V-dk_Xry3r53q4-3z6Wz6vWAu1EKzfgUQrBkIKSfuOdVbRTitPeAwdL7SCYVL0bQDKuBgnGSC7Bg2IWKZuT_nLWpphzQq-PKRxMOmugeuKhd_qPh5546AuPmnu65LD-dgqYdLYBR4supMpAuxj-ufADlhdu6w</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Ge, Yong</creator><creator>Zhang, Mo</creator><creator>Zhao, Rongtian</creator><creator>Zhang, Die</creator><creator>Zhang, Zhiyi</creator><creator>Wang, Daoping</creator><creator>Cheng, Qiuming</creator><creator>Cui, Yuxue</creator><creator>Liu, Jian</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202502</creationdate><title>Cascading effect modelling of integrating geographic factors in interdependent systems</title><author>Ge, Yong ; Zhang, Mo ; Zhao, Rongtian ; Zhang, Die ; Zhang, Zhiyi ; Wang, Daoping ; Cheng, Qiuming ; Cui, Yuxue ; Liu, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1026-7b1fe7663e0197fbfdc90299405f141c0c863795d817349871aa7471f193ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cascading effect</topic><topic>Complex system</topic><topic>Extreme events</topic><topic>Integrating modeling</topic><topic>Risk identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Yong</creatorcontrib><creatorcontrib>Zhang, Mo</creatorcontrib><creatorcontrib>Zhao, Rongtian</creatorcontrib><creatorcontrib>Zhang, Die</creatorcontrib><creatorcontrib>Zhang, Zhiyi</creatorcontrib><creatorcontrib>Wang, Daoping</creatorcontrib><creatorcontrib>Cheng, Qiuming</creatorcontrib><creatorcontrib>Cui, Yuxue</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><collection>CrossRef</collection><jtitle>Environmental modelling &amp; software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Yong</au><au>Zhang, Mo</au><au>Zhao, Rongtian</au><au>Zhang, Die</au><au>Zhang, Zhiyi</au><au>Wang, Daoping</au><au>Cheng, Qiuming</au><au>Cui, Yuxue</au><au>Liu, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascading effect modelling of integrating geographic factors in interdependent systems</atitle><jtitle>Environmental modelling &amp; software : with environment data news</jtitle><date>2025-02</date><risdate>2025</risdate><volume>185</volume><spage>106316</spage><pages>106316-</pages><artnum>106316</artnum><issn>1364-8152</issn><abstract>Cascading effects from global disruptions such as natural disasters and pandemics have attracted significant research attention. Current approaches face challenges in adequately integrating geographic and systemic factors, limiting their ability to simulate the intricate dynamics of interdependent systems. Here, we proposed a novel Interdependency Network-based Geographic Cascade (INGC) model, coupling geographic factors to capture cascading shocks across global interdependent networks. By integrating macro-level interdependencies and typical dynamic network modelling approaches, the INGC enables more accurate simulations of hazard damage and shock propagation, highlighting critical nodes and pathways essential for informed policy-making. Through the global lockdown case analysis, the INGC model demonstrated its advantages in identifying critical sectors and regions by revealing heterogenous cascading patterns and their details robustly. This approach offers a scalable framework for future research and policy, ensuring greater resilience in the face of complex global extreme events. •We proposed a geographic cascade model based on interdependency networks.•INGC model can quantify losses, detect propagation, assess risks of cascades.•The model showed different cascading patterns in the global lockdown case.•INGC outputs provide key warnings to mitigate losses and allocate resources.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2024.106316</doi></addata></record>
fulltext fulltext
identifier ISSN: 1364-8152
ispartof Environmental modelling & software : with environment data news, 2025-02, Vol.185, p.106316, Article 106316
issn 1364-8152
language eng
recordid cdi_crossref_primary_10_1016_j_envsoft_2024_106316
source ScienceDirect Freedom Collection
subjects Cascading effect
Complex system
Extreme events
Integrating modeling
Risk identification
title Cascading effect modelling of integrating geographic factors in interdependent systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascading%20effect%20modelling%20of%20integrating%20geographic%20factors%20in%20interdependent%20systems&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Ge,%20Yong&rft.date=2025-02&rft.volume=185&rft.spage=106316&rft.pages=106316-&rft.artnum=106316&rft.issn=1364-8152&rft_id=info:doi/10.1016/j.envsoft.2024.106316&rft_dat=%3Celsevier_cross%3ES1364815224003773%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1026-7b1fe7663e0197fbfdc90299405f141c0c863795d817349871aa7471f193ce03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true