Loading…
Cascading effect modelling of integrating geographic factors in interdependent systems
Cascading effects from global disruptions such as natural disasters and pandemics have attracted significant research attention. Current approaches face challenges in adequately integrating geographic and systemic factors, limiting their ability to simulate the intricate dynamics of interdependent s...
Saved in:
Published in: | Environmental modelling & software : with environment data news 2025-02, Vol.185, p.106316, Article 106316 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1026-7b1fe7663e0197fbfdc90299405f141c0c863795d817349871aa7471f193ce03 |
container_end_page | |
container_issue | |
container_start_page | 106316 |
container_title | Environmental modelling & software : with environment data news |
container_volume | 185 |
creator | Ge, Yong Zhang, Mo Zhao, Rongtian Zhang, Die Zhang, Zhiyi Wang, Daoping Cheng, Qiuming Cui, Yuxue Liu, Jian |
description | Cascading effects from global disruptions such as natural disasters and pandemics have attracted significant research attention. Current approaches face challenges in adequately integrating geographic and systemic factors, limiting their ability to simulate the intricate dynamics of interdependent systems. Here, we proposed a novel Interdependency Network-based Geographic Cascade (INGC) model, coupling geographic factors to capture cascading shocks across global interdependent networks. By integrating macro-level interdependencies and typical dynamic network modelling approaches, the INGC enables more accurate simulations of hazard damage and shock propagation, highlighting critical nodes and pathways essential for informed policy-making. Through the global lockdown case analysis, the INGC model demonstrated its advantages in identifying critical sectors and regions by revealing heterogenous cascading patterns and their details robustly. This approach offers a scalable framework for future research and policy, ensuring greater resilience in the face of complex global extreme events.
•We proposed a geographic cascade model based on interdependency networks.•INGC model can quantify losses, detect propagation, assess risks of cascades.•The model showed different cascading patterns in the global lockdown case.•INGC outputs provide key warnings to mitigate losses and allocate resources. |
doi_str_mv | 10.1016/j.envsoft.2024.106316 |
format | article |
fullrecord | <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_envsoft_2024_106316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1364815224003773</els_id><sourcerecordid>S1364815224003773</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1026-7b1fe7663e0197fbfdc90299405f141c0c863795d817349871aa7471f193ce03</originalsourceid><addsrcrecordid>eNqFkM9KAzEQxnNQsFYfQdgX2JrZZJPNSaT4DwpeiteQJpOa0m5KEgp9e7PWu6f55pv5huFHyAPQBVAQj7sFjqccfVl0tOPVEwzEFZkBE7wdoO9uyG3OO0pp1XxGvpYmW-PCuG3Qe7SlOUSH-_1kRN-EseA2mTK1W4xVHr-DbbyxJaZcx78byeERR4djafI5FzzkO3LtzT7j_V-dk_Xry3r53q4-3z6Wz6vWAu1EKzfgUQrBkIKSfuOdVbRTitPeAwdL7SCYVL0bQDKuBgnGSC7Bg2IWKZuT_nLWpphzQq-PKRxMOmugeuKhd_qPh5546AuPmnu65LD-dgqYdLYBR4supMpAuxj-ufADlhdu6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cascading effect modelling of integrating geographic factors in interdependent systems</title><source>ScienceDirect Freedom Collection</source><creator>Ge, Yong ; Zhang, Mo ; Zhao, Rongtian ; Zhang, Die ; Zhang, Zhiyi ; Wang, Daoping ; Cheng, Qiuming ; Cui, Yuxue ; Liu, Jian</creator><creatorcontrib>Ge, Yong ; Zhang, Mo ; Zhao, Rongtian ; Zhang, Die ; Zhang, Zhiyi ; Wang, Daoping ; Cheng, Qiuming ; Cui, Yuxue ; Liu, Jian</creatorcontrib><description>Cascading effects from global disruptions such as natural disasters and pandemics have attracted significant research attention. Current approaches face challenges in adequately integrating geographic and systemic factors, limiting their ability to simulate the intricate dynamics of interdependent systems. Here, we proposed a novel Interdependency Network-based Geographic Cascade (INGC) model, coupling geographic factors to capture cascading shocks across global interdependent networks. By integrating macro-level interdependencies and typical dynamic network modelling approaches, the INGC enables more accurate simulations of hazard damage and shock propagation, highlighting critical nodes and pathways essential for informed policy-making. Through the global lockdown case analysis, the INGC model demonstrated its advantages in identifying critical sectors and regions by revealing heterogenous cascading patterns and their details robustly. This approach offers a scalable framework for future research and policy, ensuring greater resilience in the face of complex global extreme events.
•We proposed a geographic cascade model based on interdependency networks.•INGC model can quantify losses, detect propagation, assess risks of cascades.•The model showed different cascading patterns in the global lockdown case.•INGC outputs provide key warnings to mitigate losses and allocate resources.</description><identifier>ISSN: 1364-8152</identifier><identifier>DOI: 10.1016/j.envsoft.2024.106316</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cascading effect ; Complex system ; Extreme events ; Integrating modeling ; Risk identification</subject><ispartof>Environmental modelling & software : with environment data news, 2025-02, Vol.185, p.106316, Article 106316</ispartof><rights>2025 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1026-7b1fe7663e0197fbfdc90299405f141c0c863795d817349871aa7471f193ce03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ge, Yong</creatorcontrib><creatorcontrib>Zhang, Mo</creatorcontrib><creatorcontrib>Zhao, Rongtian</creatorcontrib><creatorcontrib>Zhang, Die</creatorcontrib><creatorcontrib>Zhang, Zhiyi</creatorcontrib><creatorcontrib>Wang, Daoping</creatorcontrib><creatorcontrib>Cheng, Qiuming</creatorcontrib><creatorcontrib>Cui, Yuxue</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><title>Cascading effect modelling of integrating geographic factors in interdependent systems</title><title>Environmental modelling & software : with environment data news</title><description>Cascading effects from global disruptions such as natural disasters and pandemics have attracted significant research attention. Current approaches face challenges in adequately integrating geographic and systemic factors, limiting their ability to simulate the intricate dynamics of interdependent systems. Here, we proposed a novel Interdependency Network-based Geographic Cascade (INGC) model, coupling geographic factors to capture cascading shocks across global interdependent networks. By integrating macro-level interdependencies and typical dynamic network modelling approaches, the INGC enables more accurate simulations of hazard damage and shock propagation, highlighting critical nodes and pathways essential for informed policy-making. Through the global lockdown case analysis, the INGC model demonstrated its advantages in identifying critical sectors and regions by revealing heterogenous cascading patterns and their details robustly. This approach offers a scalable framework for future research and policy, ensuring greater resilience in the face of complex global extreme events.
•We proposed a geographic cascade model based on interdependency networks.•INGC model can quantify losses, detect propagation, assess risks of cascades.•The model showed different cascading patterns in the global lockdown case.•INGC outputs provide key warnings to mitigate losses and allocate resources.</description><subject>Cascading effect</subject><subject>Complex system</subject><subject>Extreme events</subject><subject>Integrating modeling</subject><subject>Risk identification</subject><issn>1364-8152</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQxnNQsFYfQdgX2JrZZJPNSaT4DwpeiteQJpOa0m5KEgp9e7PWu6f55pv5huFHyAPQBVAQj7sFjqccfVl0tOPVEwzEFZkBE7wdoO9uyG3OO0pp1XxGvpYmW-PCuG3Qe7SlOUSH-_1kRN-EseA2mTK1W4xVHr-DbbyxJaZcx78byeERR4djafI5FzzkO3LtzT7j_V-dk_Xry3r53q4-3z6Wz6vWAu1EKzfgUQrBkIKSfuOdVbRTitPeAwdL7SCYVL0bQDKuBgnGSC7Bg2IWKZuT_nLWpphzQq-PKRxMOmugeuKhd_qPh5546AuPmnu65LD-dgqYdLYBR4supMpAuxj-ufADlhdu6w</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Ge, Yong</creator><creator>Zhang, Mo</creator><creator>Zhao, Rongtian</creator><creator>Zhang, Die</creator><creator>Zhang, Zhiyi</creator><creator>Wang, Daoping</creator><creator>Cheng, Qiuming</creator><creator>Cui, Yuxue</creator><creator>Liu, Jian</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202502</creationdate><title>Cascading effect modelling of integrating geographic factors in interdependent systems</title><author>Ge, Yong ; Zhang, Mo ; Zhao, Rongtian ; Zhang, Die ; Zhang, Zhiyi ; Wang, Daoping ; Cheng, Qiuming ; Cui, Yuxue ; Liu, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1026-7b1fe7663e0197fbfdc90299405f141c0c863795d817349871aa7471f193ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cascading effect</topic><topic>Complex system</topic><topic>Extreme events</topic><topic>Integrating modeling</topic><topic>Risk identification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Yong</creatorcontrib><creatorcontrib>Zhang, Mo</creatorcontrib><creatorcontrib>Zhao, Rongtian</creatorcontrib><creatorcontrib>Zhang, Die</creatorcontrib><creatorcontrib>Zhang, Zhiyi</creatorcontrib><creatorcontrib>Wang, Daoping</creatorcontrib><creatorcontrib>Cheng, Qiuming</creatorcontrib><creatorcontrib>Cui, Yuxue</creatorcontrib><creatorcontrib>Liu, Jian</creatorcontrib><collection>CrossRef</collection><jtitle>Environmental modelling & software : with environment data news</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Yong</au><au>Zhang, Mo</au><au>Zhao, Rongtian</au><au>Zhang, Die</au><au>Zhang, Zhiyi</au><au>Wang, Daoping</au><au>Cheng, Qiuming</au><au>Cui, Yuxue</au><au>Liu, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cascading effect modelling of integrating geographic factors in interdependent systems</atitle><jtitle>Environmental modelling & software : with environment data news</jtitle><date>2025-02</date><risdate>2025</risdate><volume>185</volume><spage>106316</spage><pages>106316-</pages><artnum>106316</artnum><issn>1364-8152</issn><abstract>Cascading effects from global disruptions such as natural disasters and pandemics have attracted significant research attention. Current approaches face challenges in adequately integrating geographic and systemic factors, limiting their ability to simulate the intricate dynamics of interdependent systems. Here, we proposed a novel Interdependency Network-based Geographic Cascade (INGC) model, coupling geographic factors to capture cascading shocks across global interdependent networks. By integrating macro-level interdependencies and typical dynamic network modelling approaches, the INGC enables more accurate simulations of hazard damage and shock propagation, highlighting critical nodes and pathways essential for informed policy-making. Through the global lockdown case analysis, the INGC model demonstrated its advantages in identifying critical sectors and regions by revealing heterogenous cascading patterns and their details robustly. This approach offers a scalable framework for future research and policy, ensuring greater resilience in the face of complex global extreme events.
•We proposed a geographic cascade model based on interdependency networks.•INGC model can quantify losses, detect propagation, assess risks of cascades.•The model showed different cascading patterns in the global lockdown case.•INGC outputs provide key warnings to mitigate losses and allocate resources.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.envsoft.2024.106316</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-8152 |
ispartof | Environmental modelling & software : with environment data news, 2025-02, Vol.185, p.106316, Article 106316 |
issn | 1364-8152 |
language | eng |
recordid | cdi_crossref_primary_10_1016_j_envsoft_2024_106316 |
source | ScienceDirect Freedom Collection |
subjects | Cascading effect Complex system Extreme events Integrating modeling Risk identification |
title | Cascading effect modelling of integrating geographic factors in interdependent systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A58%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cascading%20effect%20modelling%20of%20integrating%20geographic%20factors%20in%20interdependent%20systems&rft.jtitle=Environmental%20modelling%20&%20software%20:%20with%20environment%20data%20news&rft.au=Ge,%20Yong&rft.date=2025-02&rft.volume=185&rft.spage=106316&rft.pages=106316-&rft.artnum=106316&rft.issn=1364-8152&rft_id=info:doi/10.1016/j.envsoft.2024.106316&rft_dat=%3Celsevier_cross%3ES1364815224003773%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1026-7b1fe7663e0197fbfdc90299405f141c0c863795d817349871aa7471f193ce03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |