Loading…

Evidence for early asteroidal collisions prior to 4.15 Ga from basaltic eucrite phosphate U–Pb chronology

The late heavy bombardment (LHB) hypothesis, wherein the terrestrial planets are thought to have suffered intense collisions ca. 3.9 billion years ago, is under debate. Coupled with new dynamical calculations, re-examination of geochronological data seem to support an earlier solar system instabilit...

Full description

Saved in:
Bibliographic Details
Published in:Earth and planetary science letters 2020-11, Vol.549, p.116497, Article 116497
Main Authors: Koike, Mizuho, Sano, Yuji, Takahata, Naoto, Iizuka, Tsuyoshi, Ono, Haruka, Mikouchi, Takashi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The late heavy bombardment (LHB) hypothesis, wherein the terrestrial planets are thought to have suffered intense collisions ca. 3.9 billion years ago, is under debate. Coupled with new dynamical calculations, re-examination of geochronological data seem to support an earlier solar system instability and a smooth monotonic decline in impacts, as opposed to a “cataclysm.” To better understand this collisional history, records from the asteroidal meteorites are required. Here, we report a uranium–lead (U–Pb) chronological dataset for eucrite meteorites thought to originate from the asteroid 4 Vesta; this dataset indicates to a continuous history of collisions prior to 4.15 Ga. Our 207Pb⁎/206Pb⁎ model ages of apatite [Ca5(PO4)3(F,Cl,OH)] and merrillite [Ca9NaMg(PO4)7] from three brecciated basaltic eucrites—Juvinas (4150.3 ± 11.6 million years ago (Ma); merrillite only), Camel Donga (disturbed around 4570–4370 Ma), and Stannern (4143.0 ± 12.5 Ma)—record multiple thermal metamorphic events during the period of ∼4.4–4.15 Ga. We interpret this to mean that Vesta or the vestoid cluster underwent multiple impacts and moderate high-temperature reheating during this time. The ages of ∼4.4–4.15 Ga are distinctly younger than the initial magmatic process on Vesta (>4.5 Ga) but are significantly older than a later “impact peak” based on some interpretations of 40Ar–39Ar chronologies (∼3.9–3.5 Ga). The intense collisions prior to 4.15 Ga on Vesta are at odds with the conventional LHB hypothesis but not inconsistent with the much earlier bombardment and monotonic decline scenario. Different radiometric chronologies of the asteroid likely represent the different stages of a continual collisional process. Conversely, the model 207Pb⁎/206Pb⁎ ages of apatite in the unbrecciated basaltic eucrite, Agoult, returned an age of 4524.8 ± 9.6 Ma. This may represent slow cooling from an earlier global reheating of the crust on Vesta at 4.55 Ga, as documented by other radiometric chronologies. The apatite in Juvinas recorded a coincident timing of 4516.9 ± 10.4 Ma, which could be due to either slow crustal cooling or impact. •NanoSIMS U-Pb dating of phosphates in basaltic eucrites.•Unbrecciated eucrites recorded the slow cooling process of the asteroid crusts.•Brecciated eucrites reveal the presence of multiple impacts on Vesta during ∼4.4–4.15 billion years ago.•These “early collisions” may be an end tail of the earlier bombardments among the inner solar system.
ISSN:0012-821X
1385-013X
DOI:10.1016/j.epsl.2020.116497