Loading…

Time-strain evolution of shear zones from petrographically constrained Rb–Sr muscovite analysis

Some isotopic ratios in minerals like monazite, apatite, and mica can record the thermal response to mylonitization, but such systems may fail to track the time of low- to medium temperature fabric realignment (recrystallization). New analytical methods that allow spatially resolved measurement isot...

Full description

Saved in:
Bibliographic Details
Published in:Earth and planetary science letters 2023-01, Vol.602, p.117969, Article 117969
Main Authors: Ribeiro, Bruno V., Kirkland, Christopher L., Kelsey, David E., Reddy, Steven M., Hartnady, Michael I.H., Faleiros, Frederico M., Rankenburg, Kai, Liebmann, Janne, Korhonen, Fawna J., Clark, Chris
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a323t-4f4ba46f08c750c2ba0d2a79c5c886676e979546ac500d75f7314ce0132a6b603
cites cdi_FETCH-LOGICAL-a323t-4f4ba46f08c750c2ba0d2a79c5c886676e979546ac500d75f7314ce0132a6b603
container_end_page
container_issue
container_start_page 117969
container_title Earth and planetary science letters
container_volume 602
creator Ribeiro, Bruno V.
Kirkland, Christopher L.
Kelsey, David E.
Reddy, Steven M.
Hartnady, Michael I.H.
Faleiros, Frederico M.
Rankenburg, Kai
Liebmann, Janne
Korhonen, Fawna J.
Clark, Chris
description Some isotopic ratios in minerals like monazite, apatite, and mica can record the thermal response to mylonitization, but such systems may fail to track the time of low- to medium temperature fabric realignment (recrystallization). New analytical methods that allow spatially resolved measurement isotopic ratios in distinct microstructures offer the potential to characterize the time-strain evolution of mid-crustal shear zones over a temperature range conducive to capturing the growth timing of those structures. Here we present high spatial resolution electron backscatter diffraction (EBSD), mineral chemistry, and in situ Rb–Sr dates from two texturally distinct muscovite populations in a mid- to upper-greenschist facies granitic mylonite from Top Up Rise, Western Australia. Coarse-grained muscovite fish retain a primary magmatic composition, displaying microstructural evidence of mechanical (kink and folds) and crystal-plastic deformation. The muscovite fish yield a Rb–Sr isochron date of 1614±75 Ma that either records the crystallization of the granitic protolith or cooling from high-grade metamorphic overprinting as constrained by in situ garnet Lu–Hf dates in related metapelites (1696±43 Ma and 1670±36 Ma). Conversely, fine-grained muscovite texturally associated with shear bands is chemically distinct, display microstructural evidence of fluid-assisted dynamic recrystallization and yield a distinctly younger isochron date of 609±14 Ma. The Rb–Sr dates from the coarse-grained muscovite fish cannot be unequivocally linked to mylonitization as they are indistinguishable from regional metamorphic processes. Muscovite grains behaved as rigid porphyroclasts during later medium-temperature mylonitization, leading to fish geometries, whilst maintaining intact Rb–Sr systematics. However, recrystallized/neoblastic fine-grained muscovite records the timing of medium-temperature mylonitization, establishing a direct time–strain relationship. These results highlight the potential for significant diachronicity in mineralogical components of mylonitic fabrics, demonstrating the need to establish direct time-strain relationships in order to accurately reconstruct deformation histories. •New muscovite microstructural analysis via high spatial resolution EBSD mapping.•Complex time-strain evolution revealed by in situ muscovite Rb–Sr and garnet Lu–Hf ages.•Muscovite fish may retain previous isotopic memory during mylonitization.•Muscovite in shear bands defines a direct t
doi_str_mv 10.1016/j.epsl.2022.117969
format article
fullrecord <record><control><sourceid>elsevier_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1016_j_epsl_2022_117969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X22006057</els_id><sourcerecordid>S0012821X22006057</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-4f4ba46f08c750c2ba0d2a79c5c886676e979546ac500d75f7314ce0132a6b603</originalsourceid><addsrcrecordid>eNp9kM1Kw0AUhQdRsFZfwNW8QOqdSTJJwI0U_6AgaIXuhpvJjZ2SZMJMWqgr38E39ElsiWtXZ_UdzvkYuxYwEyDUzWZGfWhmEqScCZEVqjhhExHnaQQiXp2yCYCQUS7F6pxdhLABAJWqYsJwaVuKwuDRdpx2rtkO1nXc1TysCT3_dB0FXnvX8p4G7z489mtrsGn23LhuBKnir-XP1_eb5-02GLezA3HssNkHGy7ZWY1NoKu_nLL3h_vl_ClavDw-z-8WEcYyHqKkTkpMVA25yVIwskSoJGaFSU2eK5UpKrIiTRSaFKDK0jqLRWLocE-iKhXEUybHXuNdCJ5q3Xvbot9rAfooSW_0UZI-StKjpAN0O0J0WLaz5HUwljpDlfVkBl05-x_-C8cOc2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-strain evolution of shear zones from petrographically constrained Rb–Sr muscovite analysis</title><source>Elsevier</source><creator>Ribeiro, Bruno V. ; Kirkland, Christopher L. ; Kelsey, David E. ; Reddy, Steven M. ; Hartnady, Michael I.H. ; Faleiros, Frederico M. ; Rankenburg, Kai ; Liebmann, Janne ; Korhonen, Fawna J. ; Clark, Chris</creator><creatorcontrib>Ribeiro, Bruno V. ; Kirkland, Christopher L. ; Kelsey, David E. ; Reddy, Steven M. ; Hartnady, Michael I.H. ; Faleiros, Frederico M. ; Rankenburg, Kai ; Liebmann, Janne ; Korhonen, Fawna J. ; Clark, Chris</creatorcontrib><description>Some isotopic ratios in minerals like monazite, apatite, and mica can record the thermal response to mylonitization, but such systems may fail to track the time of low- to medium temperature fabric realignment (recrystallization). New analytical methods that allow spatially resolved measurement isotopic ratios in distinct microstructures offer the potential to characterize the time-strain evolution of mid-crustal shear zones over a temperature range conducive to capturing the growth timing of those structures. Here we present high spatial resolution electron backscatter diffraction (EBSD), mineral chemistry, and in situ Rb–Sr dates from two texturally distinct muscovite populations in a mid- to upper-greenschist facies granitic mylonite from Top Up Rise, Western Australia. Coarse-grained muscovite fish retain a primary magmatic composition, displaying microstructural evidence of mechanical (kink and folds) and crystal-plastic deformation. The muscovite fish yield a Rb–Sr isochron date of 1614±75 Ma that either records the crystallization of the granitic protolith or cooling from high-grade metamorphic overprinting as constrained by in situ garnet Lu–Hf dates in related metapelites (1696±43 Ma and 1670±36 Ma). Conversely, fine-grained muscovite texturally associated with shear bands is chemically distinct, display microstructural evidence of fluid-assisted dynamic recrystallization and yield a distinctly younger isochron date of 609±14 Ma. The Rb–Sr dates from the coarse-grained muscovite fish cannot be unequivocally linked to mylonitization as they are indistinguishable from regional metamorphic processes. Muscovite grains behaved as rigid porphyroclasts during later medium-temperature mylonitization, leading to fish geometries, whilst maintaining intact Rb–Sr systematics. However, recrystallized/neoblastic fine-grained muscovite records the timing of medium-temperature mylonitization, establishing a direct time–strain relationship. These results highlight the potential for significant diachronicity in mineralogical components of mylonitic fabrics, demonstrating the need to establish direct time-strain relationships in order to accurately reconstruct deformation histories. •New muscovite microstructural analysis via high spatial resolution EBSD mapping.•Complex time-strain evolution revealed by in situ muscovite Rb–Sr and garnet Lu–Hf ages.•Muscovite fish may retain previous isotopic memory during mylonitization.•Muscovite in shear bands defines a direct time-strain relation during mylonitization.•Microstructures and regional P-T-t are key to constrain the timing of mylonitization.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2022.117969</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>EBSD ; In situ Lu-Hf geochronology ; In situ Rb-Sr geochronology ; Mid-crustal shear zones ; Muscovite deformation ; Muscovite fish</subject><ispartof>Earth and planetary science letters, 2023-01, Vol.602, p.117969, Article 117969</ispartof><rights>2022 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-4f4ba46f08c750c2ba0d2a79c5c886676e979546ac500d75f7314ce0132a6b603</citedby><cites>FETCH-LOGICAL-a323t-4f4ba46f08c750c2ba0d2a79c5c886676e979546ac500d75f7314ce0132a6b603</cites><orcidid>0000-0003-3367-8961 ; 0000-0002-4726-5714 ; 0000-0002-3652-1831 ; 0000-0003-3708-9304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ribeiro, Bruno V.</creatorcontrib><creatorcontrib>Kirkland, Christopher L.</creatorcontrib><creatorcontrib>Kelsey, David E.</creatorcontrib><creatorcontrib>Reddy, Steven M.</creatorcontrib><creatorcontrib>Hartnady, Michael I.H.</creatorcontrib><creatorcontrib>Faleiros, Frederico M.</creatorcontrib><creatorcontrib>Rankenburg, Kai</creatorcontrib><creatorcontrib>Liebmann, Janne</creatorcontrib><creatorcontrib>Korhonen, Fawna J.</creatorcontrib><creatorcontrib>Clark, Chris</creatorcontrib><title>Time-strain evolution of shear zones from petrographically constrained Rb–Sr muscovite analysis</title><title>Earth and planetary science letters</title><description>Some isotopic ratios in minerals like monazite, apatite, and mica can record the thermal response to mylonitization, but such systems may fail to track the time of low- to medium temperature fabric realignment (recrystallization). New analytical methods that allow spatially resolved measurement isotopic ratios in distinct microstructures offer the potential to characterize the time-strain evolution of mid-crustal shear zones over a temperature range conducive to capturing the growth timing of those structures. Here we present high spatial resolution electron backscatter diffraction (EBSD), mineral chemistry, and in situ Rb–Sr dates from two texturally distinct muscovite populations in a mid- to upper-greenschist facies granitic mylonite from Top Up Rise, Western Australia. Coarse-grained muscovite fish retain a primary magmatic composition, displaying microstructural evidence of mechanical (kink and folds) and crystal-plastic deformation. The muscovite fish yield a Rb–Sr isochron date of 1614±75 Ma that either records the crystallization of the granitic protolith or cooling from high-grade metamorphic overprinting as constrained by in situ garnet Lu–Hf dates in related metapelites (1696±43 Ma and 1670±36 Ma). Conversely, fine-grained muscovite texturally associated with shear bands is chemically distinct, display microstructural evidence of fluid-assisted dynamic recrystallization and yield a distinctly younger isochron date of 609±14 Ma. The Rb–Sr dates from the coarse-grained muscovite fish cannot be unequivocally linked to mylonitization as they are indistinguishable from regional metamorphic processes. Muscovite grains behaved as rigid porphyroclasts during later medium-temperature mylonitization, leading to fish geometries, whilst maintaining intact Rb–Sr systematics. However, recrystallized/neoblastic fine-grained muscovite records the timing of medium-temperature mylonitization, establishing a direct time–strain relationship. These results highlight the potential for significant diachronicity in mineralogical components of mylonitic fabrics, demonstrating the need to establish direct time-strain relationships in order to accurately reconstruct deformation histories. •New muscovite microstructural analysis via high spatial resolution EBSD mapping.•Complex time-strain evolution revealed by in situ muscovite Rb–Sr and garnet Lu–Hf ages.•Muscovite fish may retain previous isotopic memory during mylonitization.•Muscovite in shear bands defines a direct time-strain relation during mylonitization.•Microstructures and regional P-T-t are key to constrain the timing of mylonitization.</description><subject>EBSD</subject><subject>In situ Lu-Hf geochronology</subject><subject>In situ Rb-Sr geochronology</subject><subject>Mid-crustal shear zones</subject><subject>Muscovite deformation</subject><subject>Muscovite fish</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1Kw0AUhQdRsFZfwNW8QOqdSTJJwI0U_6AgaIXuhpvJjZ2SZMJMWqgr38E39ElsiWtXZ_UdzvkYuxYwEyDUzWZGfWhmEqScCZEVqjhhExHnaQQiXp2yCYCQUS7F6pxdhLABAJWqYsJwaVuKwuDRdpx2rtkO1nXc1TysCT3_dB0FXnvX8p4G7z489mtrsGn23LhuBKnir-XP1_eb5-02GLezA3HssNkHGy7ZWY1NoKu_nLL3h_vl_ClavDw-z-8WEcYyHqKkTkpMVA25yVIwskSoJGaFSU2eK5UpKrIiTRSaFKDK0jqLRWLocE-iKhXEUybHXuNdCJ5q3Xvbot9rAfooSW_0UZI-StKjpAN0O0J0WLaz5HUwljpDlfVkBl05-x_-C8cOc2U</recordid><startdate>20230115</startdate><enddate>20230115</enddate><creator>Ribeiro, Bruno V.</creator><creator>Kirkland, Christopher L.</creator><creator>Kelsey, David E.</creator><creator>Reddy, Steven M.</creator><creator>Hartnady, Michael I.H.</creator><creator>Faleiros, Frederico M.</creator><creator>Rankenburg, Kai</creator><creator>Liebmann, Janne</creator><creator>Korhonen, Fawna J.</creator><creator>Clark, Chris</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3367-8961</orcidid><orcidid>https://orcid.org/0000-0002-4726-5714</orcidid><orcidid>https://orcid.org/0000-0002-3652-1831</orcidid><orcidid>https://orcid.org/0000-0003-3708-9304</orcidid></search><sort><creationdate>20230115</creationdate><title>Time-strain evolution of shear zones from petrographically constrained Rb–Sr muscovite analysis</title><author>Ribeiro, Bruno V. ; Kirkland, Christopher L. ; Kelsey, David E. ; Reddy, Steven M. ; Hartnady, Michael I.H. ; Faleiros, Frederico M. ; Rankenburg, Kai ; Liebmann, Janne ; Korhonen, Fawna J. ; Clark, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-4f4ba46f08c750c2ba0d2a79c5c886676e979546ac500d75f7314ce0132a6b603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>EBSD</topic><topic>In situ Lu-Hf geochronology</topic><topic>In situ Rb-Sr geochronology</topic><topic>Mid-crustal shear zones</topic><topic>Muscovite deformation</topic><topic>Muscovite fish</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribeiro, Bruno V.</creatorcontrib><creatorcontrib>Kirkland, Christopher L.</creatorcontrib><creatorcontrib>Kelsey, David E.</creatorcontrib><creatorcontrib>Reddy, Steven M.</creatorcontrib><creatorcontrib>Hartnady, Michael I.H.</creatorcontrib><creatorcontrib>Faleiros, Frederico M.</creatorcontrib><creatorcontrib>Rankenburg, Kai</creatorcontrib><creatorcontrib>Liebmann, Janne</creatorcontrib><creatorcontrib>Korhonen, Fawna J.</creatorcontrib><creatorcontrib>Clark, Chris</creatorcontrib><collection>CrossRef</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribeiro, Bruno V.</au><au>Kirkland, Christopher L.</au><au>Kelsey, David E.</au><au>Reddy, Steven M.</au><au>Hartnady, Michael I.H.</au><au>Faleiros, Frederico M.</au><au>Rankenburg, Kai</au><au>Liebmann, Janne</au><au>Korhonen, Fawna J.</au><au>Clark, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-strain evolution of shear zones from petrographically constrained Rb–Sr muscovite analysis</atitle><jtitle>Earth and planetary science letters</jtitle><date>2023-01-15</date><risdate>2023</risdate><volume>602</volume><spage>117969</spage><pages>117969-</pages><artnum>117969</artnum><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>Some isotopic ratios in minerals like monazite, apatite, and mica can record the thermal response to mylonitization, but such systems may fail to track the time of low- to medium temperature fabric realignment (recrystallization). New analytical methods that allow spatially resolved measurement isotopic ratios in distinct microstructures offer the potential to characterize the time-strain evolution of mid-crustal shear zones over a temperature range conducive to capturing the growth timing of those structures. Here we present high spatial resolution electron backscatter diffraction (EBSD), mineral chemistry, and in situ Rb–Sr dates from two texturally distinct muscovite populations in a mid- to upper-greenschist facies granitic mylonite from Top Up Rise, Western Australia. Coarse-grained muscovite fish retain a primary magmatic composition, displaying microstructural evidence of mechanical (kink and folds) and crystal-plastic deformation. The muscovite fish yield a Rb–Sr isochron date of 1614±75 Ma that either records the crystallization of the granitic protolith or cooling from high-grade metamorphic overprinting as constrained by in situ garnet Lu–Hf dates in related metapelites (1696±43 Ma and 1670±36 Ma). Conversely, fine-grained muscovite texturally associated with shear bands is chemically distinct, display microstructural evidence of fluid-assisted dynamic recrystallization and yield a distinctly younger isochron date of 609±14 Ma. The Rb–Sr dates from the coarse-grained muscovite fish cannot be unequivocally linked to mylonitization as they are indistinguishable from regional metamorphic processes. Muscovite grains behaved as rigid porphyroclasts during later medium-temperature mylonitization, leading to fish geometries, whilst maintaining intact Rb–Sr systematics. However, recrystallized/neoblastic fine-grained muscovite records the timing of medium-temperature mylonitization, establishing a direct time–strain relationship. These results highlight the potential for significant diachronicity in mineralogical components of mylonitic fabrics, demonstrating the need to establish direct time-strain relationships in order to accurately reconstruct deformation histories. •New muscovite microstructural analysis via high spatial resolution EBSD mapping.•Complex time-strain evolution revealed by in situ muscovite Rb–Sr and garnet Lu–Hf ages.•Muscovite fish may retain previous isotopic memory during mylonitization.•Muscovite in shear bands defines a direct time-strain relation during mylonitization.•Microstructures and regional P-T-t are key to constrain the timing of mylonitization.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2022.117969</doi><orcidid>https://orcid.org/0000-0003-3367-8961</orcidid><orcidid>https://orcid.org/0000-0002-4726-5714</orcidid><orcidid>https://orcid.org/0000-0002-3652-1831</orcidid><orcidid>https://orcid.org/0000-0003-3708-9304</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0012-821X
ispartof Earth and planetary science letters, 2023-01, Vol.602, p.117969, Article 117969
issn 0012-821X
1385-013X
language eng
recordid cdi_crossref_primary_10_1016_j_epsl_2022_117969
source Elsevier
subjects EBSD
In situ Lu-Hf geochronology
In situ Rb-Sr geochronology
Mid-crustal shear zones
Muscovite deformation
Muscovite fish
title Time-strain evolution of shear zones from petrographically constrained Rb–Sr muscovite analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A09%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-strain%20evolution%20of%20shear%20zones%20from%20petrographically%20constrained%20Rb%E2%80%93Sr%20muscovite%20analysis&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Ribeiro,%20Bruno%20V.&rft.date=2023-01-15&rft.volume=602&rft.spage=117969&rft.pages=117969-&rft.artnum=117969&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2022.117969&rft_dat=%3Celsevier_cross%3ES0012821X22006057%3C/elsevier_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a323t-4f4ba46f08c750c2ba0d2a79c5c886676e979546ac500d75f7314ce0132a6b603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true