Loading…
Application of particle swarm optimization technique and its variants to generation expansion planning problem
This paper presents the application of particle swarm optimization (PSO) technique and its variants to least-cost generation expansion planning (GEP) problem. The GEP problem is a highly constrained, combinatorial optimization problem that can be solved by complete enumeration. PSO is one of the swa...
Saved in:
Published in: | Electric power systems research 2004-08, Vol.70 (3), p.203-210 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the application of particle swarm optimization (PSO) technique and its variants to least-cost generation expansion planning (GEP) problem. The GEP problem is a highly constrained, combinatorial optimization problem that can be solved by complete enumeration. PSO is one of the swarm intelligence (SI) techniques, which use the group intelligence behavior along with individual intelligence to solve the combinatorial optimization problem. A novel ‘virtual mapping procedure’ (VMP) is introduced to enhance the effectiveness of the PSO approaches. Penalty function approach (PFA) is used to reduce the number of infeasible solutions in the subsequent iterations. In addition to simple PSO, many variants such as constriction factor approach (CFA), Lbest model, hybrid PSO (HPSO), stretched PSO (SPSO) and composite PSO (C-PSO) are also applied to test systems. The differential evolution (DE) technique is used for parameter setting of C-PSO. The PSO and its variants are applied to a synthetic test system of five types of candidate units with 6- and 14-year planning horizon. The results obtained are compared with dynamic programming (DP) in terms of speed and efficiency. |
---|---|
ISSN: | 0378-7796 1873-2046 |
DOI: | 10.1016/j.epsr.2003.12.009 |