Loading…

A novel adaptive HBCC technique for three-phase shunt APF

This paper proposes an important improvement of the hysteresis band current control (HBCC) technique for three-phase shunt active power filter (APF) to eliminate harmonics and to compensate the reactive power generated by three-phase rectifier. In this technique, a simple and quick prediction of the...

Full description

Saved in:
Bibliographic Details
Published in:Electric power systems research 2009-07, Vol.79 (7), p.1097-1104
Main Authors: Belhaouchet, N., Rahmani, L., Begag, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes an important improvement of the hysteresis band current control (HBCC) technique for three-phase shunt active power filter (APF) to eliminate harmonics and to compensate the reactive power generated by three-phase rectifier. In this technique, a simple and quick prediction of the hysteresis band is added to a phase-locked-loop (PLL) control to ensure constant switching frequency and synchronization of modulation pulses independently on system parameters. This allows the advantages of quick response, good current tracking accuracy and minimal ripple in three-phase systems. This technique is robust and it is characterized by the simplicity, this aspect is very significant for a practice realization because it constitutes the factors which determine the cost and the reliability of industrial assembly. The proposed technique determines the switching signals of the three-phase shunt APF and the algorithm which is based on the dc bus capacitors voltage regulation using proportional-integral (PI) controller is used to determine the suitable current reference signals. The behavior of the proposed technique has been fully verified by digital simulation, where the obtained results show that the proposed technique can improve shunt APF performances noticeably.
ISSN:0378-7796
1873-2046
DOI:10.1016/j.epsr.2009.01.006